python类parse_single_sequence_example()的实例源码

batch_inputs.py 文件源码 项目:sample-cnn 作者: tae-jun 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _read_sequence_example(filename_queue,
                           n_labels=50, n_samples=59049, n_segments=10):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  context, sequence = tf.parse_single_sequence_example(
    serialized_example,
    context_features={
      'raw_labels': tf.FixedLenFeature([], dtype=tf.string)
    },
    sequence_features={
      'raw_segments': tf.FixedLenSequenceFeature([], dtype=tf.string)
    })

  segments = tf.decode_raw(sequence['raw_segments'], tf.float32)
  segments.set_shape([n_segments, n_samples])

  labels = tf.decode_raw(context['raw_labels'], tf.uint8)
  labels.set_shape([n_labels])
  labels = tf.cast(labels, tf.float32)

  return segments, labels
dataprocessor.py 文件源码 项目:tdlstm 作者: bluemonk482 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_tfrecord(filename_queue):
    reader = tf.TFRecordReader()
    _,examples = reader.read(filename_queue)

    context_features = {
        "length": tf.FixedLenFeature([], dtype=tf.int64)
    }
    sequence_features = {
        "tokens": tf.FixedLenSequenceFeature([], dtype=tf.int64),
        "labels": tf.FixedLenSequenceFeature([], dtype=tf.int64)
    }
    context_parsed, sequence_parsed = tf.parse_single_sequence_example(
        serialized=examples,
        context_features=context_features,
        sequence_features=sequence_features
    )
    return context_parsed, sequence_parsed
data_utils.py 文件源码 项目:dilated-cnn-ner 作者: iesl 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def example_parser(self, filename_queue):
        reader = tf.TFRecordReader()
        key, record_string = reader.read(filename_queue)
        features = {
            'labels': tf.FixedLenSequenceFeature([], tf.int64),
            'tokens': tf.FixedLenSequenceFeature([], tf.int64),
            'shapes': tf.FixedLenSequenceFeature([], tf.int64),
            'chars': tf.FixedLenSequenceFeature([], tf.int64),
            'seq_len': tf.FixedLenSequenceFeature([], tf.int64),
            'tok_len': tf.FixedLenSequenceFeature([], tf.int64),
        }

        _, example = tf.parse_single_sequence_example(serialized=record_string, sequence_features=features)
        labels = example['labels']
        tokens = example['tokens']
        shapes = example['shapes']
        chars = example['chars']
        seq_len = example['seq_len']
        tok_len = example['tok_len']
        # context = c['context']
        return labels, tokens, shapes, chars, seq_len, tok_len
        # return labels, tokens, labels, labels, labels
data_creator.py 文件源码 项目:tf-text-workshop 作者: tf-dl-workshop 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_and_decode_single_example(filenames, shuffle=False, num_epochs=None):
    # first construct a queue containing a list of filenames.
    # this lets a user split up there dataset in multiple files to keep size down
    # filename_queue = tf.train.string_input_producer([filename], num_epochs=10)
    filename_queue = tf.train.string_input_producer(filenames,
                                                    shuffle=shuffle, num_epochs=num_epochs)

    reader = tf.TFRecordReader()
    # One can read a single serialized example from a filename
    # serialized_example is a Tensor of type string.
    _, serialized_ex = reader.read(filename_queue)
    context, sequences = tf.parse_single_sequence_example(serialized_ex,
                                                          context_features={
                                                              "seq_length": tf.FixedLenFeature([], dtype=tf.int64)
                                                          },
                                                          sequence_features={
                                                              "seq_feature": tf.VarLenFeature(dtype=tf.int64),
                                                              "label": tf.VarLenFeature(dtype=tf.int64)
                                                          })
    return context, sequences
utils.py 文件源码 项目:VideoImagination 作者: gitpub327 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def ReadInput(self,num_epochs=None, val=False,test=False):
  if val:
    filenames = tf.gfile.Glob(self.data_dir+'/surfing_val.tfrecords')
  elif test:
    filenames = tf.gfile.Glob(self.data_dir+'/surfing_test.tfrecords')
  else:
    filenames = tf.gfile.Glob(self.data_dir+'/surfing.tfrecords')
  filename_queue = tf.train.string_input_producer(filenames,num_epochs=num_epochs, shuffle=True)
  reader = tf.TFRecordReader()
  _, example = reader.read(filename_queue)
  feature_sepc = {
      self.features: tf.FixedLenSequenceFeature(
          shape=[self.image_width * self.image_width * self.c_dim], dtype=tf.float32)}
  _, features = tf.parse_single_sequence_example(
      example, sequence_features=feature_sepc)
  moving_objs = tf.reshape(
      features[self.features], [self.video_len, self.image_width, self.image_width, self.c_dim])
  examples = tf.train.shuffle_batch(
        [moving_objs],
        batch_size=self.batch_size,
        num_threads=self.batch_size,
        capacity=self.batch_size * 100,
        min_after_dequeue=self.batch_size * 4)
  return examples
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue):

    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    contexts, features = tf.parse_single_sequence_example(
        serialized_example,
        context_features={
            "video_id": tf.FixedLenFeature([], tf.string),
            "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            "rgb": tf.FixedLenSequenceFeature([], dtype=tf.string),
            "audio": tf.FixedLenSequenceFeature([], dtype=tf.string),
        })

    # read ground truth labels
    labels = (tf.cast(
        tf.sparse_to_dense(contexts["labels"].values, (self.num_classes,), 1,
            validate_indices=False),
        tf.bool))

    rgbs, num_frames = self.get_video_matrix(features["rgb"], 1024, self.max_frames)
    audios, num_frames = self.get_video_matrix(features["audio"], 1024, self.max_frames)

    batch_video_ids = tf.expand_dims(contexts["video_id"], 0)
    batch_rgbs = tf.expand_dims(rgbs, 0)
    batch_audios = tf.expand_dims(audios, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)

    return batch_video_ids, batch_rgbs, batch_audios, batch_labels, batch_frames
split_video.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def frame_example_2_np(seq_example_bytes, 
                       max_quantized_value=2,
                       min_quantized_value=-2):
  feature_names=['rgb','audio']
  feature_sizes = [1024, 128]
  with tf.Graph().as_default():
    contexts, features = tf.parse_single_sequence_example(
        seq_example_bytes,
        context_features={"video_id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in feature_names
        })

    decoded_features = { name: tf.reshape(
        tf.cast(tf.decode_raw(features[name], tf.uint8), tf.float32),
        [-1, size]) for name, size in zip(feature_names, feature_sizes)
        }
    feature_matrices = {
        name: utils.Dequantize(decoded_features[name],
          max_quantized_value, min_quantized_value) for name in feature_names}

    with tf.Session() as sess:
      vid = sess.run(contexts['video_id'])
      labs = sess.run(contexts['labels'].values)
      rgb = sess.run(feature_matrices['rgb'])
      audio = sess.run(feature_matrices['audio'])

  return vid, labs, rgb, audio


#%% Split frame level file into three video level files: all, 1st half, 2nd half.
split_video.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def build_graph():
    feature_names=['rgb','audio']
    feature_sizes = [1024, 128] 
    max_quantized_value=2
    min_quantized_value=-2

    seq_example_bytes = tf.placeholder(tf.string)
    contexts, features = tf.parse_single_sequence_example(
        seq_example_bytes,
        context_features={"video_id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in feature_names
        })

    decoded_features = { name: tf.reshape(
        tf.cast(tf.decode_raw(features[name], tf.uint8), tf.float32),
        [-1, size]) for name, size in zip(feature_names, feature_sizes)
        }
    feature_matrices = {
        name: utils.Dequantize(decoded_features[name],
          max_quantized_value, min_quantized_value) for name in feature_names}

    tf.add_to_collection("vid_tsr", contexts['video_id'])
    tf.add_to_collection("labs_tsr", contexts['labels'].values)
    tf.add_to_collection("rgb_tsr", feature_matrices['rgb'])
    tf.add_to_collection("audio_tsr", feature_matrices['audio'])
    tf.add_to_collection("seq_example_bytes", seq_example_bytes)

#   with tf.Session() as sess:
#       writer = tf.summary.FileWriter('./graphs', sess.graph)
dataset.py 文件源码 项目:instacart-basket-prediction 作者: colinmorris 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def parse_record_fn(self):
    def _parse(proto):
      spec = self.record_spec()
      ctx, seq = tf.parse_single_sequence_example(proto, **spec)
      ctx.update(seq)
      result = []
      for field in self.FIELDS:
        result.append(ctx[field])
      return result
    return _parse
inputs.py 文件源码 项目:JetsonTX1_im2txt 作者: Netzeband 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
preprocess_LibriSpeech.py 文件源码 项目:deepSpeech 作者: fordDeepDSP 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def make_example(seq_len, spec_feat, labels):
    ''' Creates a SequenceExample for a single utterance.
    This function makes a SequenceExample given the sequence length,
    mfcc features and corresponding transcript.
    These sequence examples are read using tf.parse_single_sequence_example
    during training.

    Note: Some of the tf modules used in this function(such as
    tf.train.Feature) do not have comprehensive documentation in v0.12.
    This function was put together using the test routines in the
    tensorflow repo.
    See: https://github.com/tensorflow/tensorflow/
    blob/246a3724f5406b357aefcad561407720f5ccb5dc/
    tensorflow/python/kernel_tests/parsing_ops_test.py


    Args:
        seq_len: integer represents the sequence length in time frames.
        spec_feat: [TxF] matrix of mfcc features.
        labels: list of ints representing the encoded transcript.
    Returns:
        Serialized sequence example.

    '''
    # Feature lists for the sequential features of the example
    feats_list = [tf.train.Feature(float_list=tf.train.FloatList(value=frame))
                  for frame in spec_feat]
    feat_dict = {"feats": tf.train.FeatureList(feature=feats_list)}
    sequence_feats = tf.train.FeatureLists(feature_list=feat_dict)

    # Context features for the entire sequence
    len_feat = tf.train.Feature(int64_list=tf.train.Int64List(value=[seq_len]))
    label_feat = tf.train.Feature(int64_list=tf.train.Int64List(value=labels))

    context_feats = tf.train.Features(feature={"seq_len": len_feat,
                                               "labels": label_feat})

    ex = tf.train.SequenceExample(context=context_feats,
                                  feature_lists=sequence_feats)

    return ex.SerializeToString()
tfrecord_read.py 文件源码 项目:Youtube8mdataset_kagglechallenge 作者: jasonlee27 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                       filename_queue,
                       max_quantized_value=2,
                       min_quantized_value=-2):
        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(filename_queue)
        context_features, sequence_features = {"video_id": tf.FixedLenFeature([], tf.string),
                                               "labels": tf.VarLenFeature(tf.int64)}, None
        if self.sequence_data:
            sequence_features = {self.feature_name[0]: tf.FixedLenSequenceFeature([], dtype=tf.string),
                                 self.feature_name[1]: tf.FixedLenSequenceFeature([], dtype=tf.string), }
        else:
            context_features[self.feature_name[0]] = tf.FixedLenFeature(self.feature_size[0], tf.float32)
            context_features[self.feature_name[1]] = tf.FixedLenFeature(self.feature_size[1], tf.float32)

        contexts, features = tf.parse_single_sequence_example(serialized_example,
                                                              context_features=context_features,
                                                              sequence_features=sequence_features)
        labels = (tf.cast(contexts["labels"].values, tf.int64))

        if self.sequence_data:
            decoded_features = tf.reshape(tf.cast(tf.decode_raw(features[self.feature_name[0]], tf.uint8), tf.float32),
                                          [-1, self.feature_size[0]])
            video_matrix = Dequantize(decoded_features, max_quantized_value, min_quantized_value)

            decoded_features = tf.reshape(tf.cast(tf.decode_raw(features[self.feature_name[1]], tf.uint8), tf.float32),
                                          [-1, self.feature_size[1]])
            audio_matrix = Dequantize(decoded_features, max_quantized_value, min_quantized_value)

            num_frames = tf.minimum(tf.shape(decoded_features)[0], self.max_frames)
        else:
            video_matrix = contexts[self.feature_name[0]]
            audio_matrix = contexts[self.feature_name[1]]
            num_frames = tf.constant(-1)

        # Pad or truncate to 'max_frames' frames.
        # video_matrix = resize_axis(video_matrix, 0, self.max_frames)
        return contexts["video_id"], video_matrix, audio_matrix, labels, num_frames
inputs.py 文件源码 项目:im2txt_api 作者: mainyaa 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
inputs.py 文件源码 项目:im2latex 作者: dhoman01 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
inputs.py 文件源码 项目:semsearch 作者: sanjana-Bijoe 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
input_ops.py 文件源码 项目:cws-tensorflow 作者: JayYip 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def parse_example_queue(example_queue, config):
    """ Read one example.
      This function read one example and return context sequence and tag sequence
      correspondingly. 

      Args:
        filename_queue: A filename queue returned by string_input_producer
        context_feature_name: Context feature name in TFRecord. Set in ModelConfig
        tag_feature_name: Tag feature name in TFRecord. Set in ModelConfig

      Returns:
        input_seq: An int32 Tensor with different length.
        tag_seq: An int32 Tensor with different length.
      """

    #Parse one example
    context, features = tf.parse_single_sequence_example(
        example_queue,
        context_features={
            config.length_name: tf.FixedLenFeature([], dtype=tf.int64)
        },
        sequence_features={
            config.context_feature_name:
            tf.FixedLenSequenceFeature([], dtype=tf.int64),
            config.tag_feature_name:
            tf.FixedLenSequenceFeature([], dtype=tf.int64)
        })

    return (features[config.context_feature_name],
            features[config.tag_feature_name], context[config.length_name])
sequence_example_decoder.py 文件源码 项目:automatic-summarization 作者: mozilla 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def decode(self, serialized_example, items=None):
    """Decodes the given serialized TF-example.
    Args:
      serialized_example: a serialized TF-example tensor.
      items: the list of items to decode. These must be a subset of the item
        keys in self._items_to_handlers. If `items` is left as None, then all
        of the items in self._items_to_handlers are decoded.
    Returns:
      the decoded items, a list of tensor.
    """
    context, sequence = tf.parse_single_sequence_example(
        serialized_example, self._context_keys_to_features,
        self._sequence_keys_to_features)

    # Merge context and sequence features
    example = {}
    example.update(context)
    example.update(sequence)

    all_features = {}
    all_features.update(self._context_keys_to_features)
    all_features.update(self._sequence_keys_to_features)

    # Reshape non-sparse elements just once:
    for k, value in all_features.items():
      if isinstance(value, tf.FixedLenFeature):
        example[k] = tf.reshape(example[k], value.shape)

    if not items:
      items = self._items_to_handlers.keys()

    outputs = []
    for item in items:
      handler = self._items_to_handlers[item]
      keys_to_tensors = {key: example[key] for key in handler.keys}
      outputs.append(handler.tensors_to_item(keys_to_tensors))
    return outputs
inputs.py 文件源码 项目:jacksearch 作者: srome 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
inputs.py 文件源码 项目:im2txt 作者: huichen 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
sequence_example.py 文件源码 项目:master-thesis 作者: AndreasMadsen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized_example):
    context, sequence = tf.parse_single_sequence_example(
        serialized=serialized_example,
        context_features={
             "length": tf.FixedLenFeature([], dtype=tf.int64)
        },
        sequence_features={
             "source": tf.FixedLenSequenceFeature([], dtype=tf.int64),
             "target": tf.FixedLenSequenceFeature([], dtype=tf.int64)
        }
    )

    return (context['length'], sequence['source'], sequence['target'])
inputs.py 文件源码 项目:im2txt_demo 作者: siavash9000 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
inputs.py 文件源码 项目:tf-tutorial 作者: zchen0211 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def parse_sequence_example(serialized, image_feature, caption_feature):
  """Parses a tensorflow.SequenceExample into an image and caption.

  Args:
    serialized: A scalar string Tensor; a single serialized SequenceExample.
    image_feature: Name of SequenceExample context feature containing image
      data.
    caption_feature: Name of SequenceExample feature list containing integer
      captions.

  Returns:
    encoded_image: A scalar string Tensor containing a JPEG encoded image.
    caption: A 1-D uint64 Tensor with dynamically specified length.
  """
  context, sequence = tf.parse_single_sequence_example(
      serialized,
      context_features={
          image_feature: tf.FixedLenFeature([], dtype=tf.string)
      },
      sequence_features={
          caption_feature: tf.FixedLenSequenceFeature([], dtype=tf.int64),
      })

  encoded_image = context[image_feature]
  caption = sequence[caption_feature]
  return encoded_image, caption
data_decoders.py 文件源码 项目:polyaxon 作者: polyaxon 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def decode(self, data, items=None):
        """Decodes the given serialized TF-example.
        Args:
          data: a serialized TF-example tensor.
          items: the list of items to decode. These must be a subset of the item
            keys in self._items_to_handlers. If `items` is left as None, then all
            of the items in self._items_to_handlers are decoded.
        Returns:
          the decoded items, a list of tensor.
        """
        context, sequence = tf.parse_single_sequence_example(
            data, self._context_keys_to_features, self._sequence_keys_to_features)

        # Merge context and sequence features
        example = {}
        example.update(context)
        example.update(sequence)

        all_features = {}
        all_features.update(self._context_keys_to_features)
        all_features.update(self._sequence_keys_to_features)

        # Reshape non-sparse elements just once:
        for k, value in all_features.items():
            if isinstance(value, tf.FixedLenFeature):
                example[k] = tf.reshape(example[k], value.shape)

        if not items:
            items = self._items_to_handlers.keys()

        outputs = []
        for item in items:
            handler = self._items_to_handlers[item]
            keys_to_tensors = {key: example[key] for key in handler.keys}
            outputs.append(handler.tensors_to_item(keys_to_tensors))
        return outputs
utility.py 文件源码 项目:vessel-classification 作者: GlobalFishingWatch 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def single_feature_file_reader(filename_queue, num_features):
    """ Read and interpret data from a set of TFRecord files.

  Args:
    filename_queue: a queue of filenames to read through.
    num_features: the depth of the features.

  Returns:
    A pair of tuples:
      1. a context dictionary for the feature
      2. the vessel movement features, tensor of dimension [width, num_features].
  """

    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    # The serialized example is converted back to actual values.
    context_features, sequence_features = tf.parse_single_sequence_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        context_features={'mmsi': tf.FixedLenFeature([], tf.int64), },
        sequence_features={
            'movement_features': tf.FixedLenSequenceFeature(
                shape=(num_features, ), dtype=tf.float32)
        })

    return context_features, sequence_features
sequence_example_decoder.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def decode(self, serialized_example, items=None):
    """Decodes the given serialized TF-example.
    Args:
      serialized_example: a serialized TF-example tensor.
      items: the list of items to decode. These must be a subset of the item
        keys in self._items_to_handlers. If `items` is left as None, then all
        of the items in self._items_to_handlers are decoded.
    Returns:
      the decoded items, a list of tensor.
    """
    context, sequence = tf.parse_single_sequence_example(
        serialized_example, self._context_keys_to_features,
        self._sequence_keys_to_features)

    # Merge context and sequence features
    example = {}
    example.update(context)
    example.update(sequence)

    all_features = {}
    all_features.update(self._context_keys_to_features)
    all_features.update(self._sequence_keys_to_features)

    # Reshape non-sparse elements just once:
    for k, value in all_features.items():
      if isinstance(value, tf.FixedLenFeature):
        example[k] = tf.reshape(example[k], value.shape)

    if not items:
      items = self._items_to_handlers.keys()

    outputs = []
    for item in items:
      handler = self._items_to_handlers[item]
      keys_to_tensors = {key: example[key] for key in handler.keys}
      outputs.append(handler.tensors_to_item(keys_to_tensors))
    return outputs
readers.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def prepare_serialized_examples(self, serialized_example,
      max_quantized_value=2, min_quantized_value=-2):

    contexts, features = tf.parse_single_sequence_example(
        serialized_example,
        context_features={"video_id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in self.feature_names
        })

    # read ground truth labels
    labels = (tf.cast(
        tf.sparse_to_dense(contexts["labels"].values, (self.num_classes,), 1,
            validate_indices=False),
        tf.bool))

    # loads (potentially) different types of features and concatenates them
    num_features = len(self.feature_names)
    assert num_features > 0, "No feature selected: feature_names is empty!"

    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    num_frames = -1  # the number of frames in the video
    feature_matrices = [None] * num_features  # an array of different features
    for feature_index in range(num_features):
      feature_matrix, num_frames_in_this_feature = self.get_video_matrix(
          features[self.feature_names[feature_index]],
          self.feature_sizes[feature_index],
          self.max_frames,
          max_quantized_value,
          min_quantized_value)
      if num_frames == -1:
        num_frames = num_frames_in_this_feature
      else:
        tf.assert_equal(num_frames, num_frames_in_this_feature)

      feature_matrices[feature_index] = feature_matrix

    # cap the number of frames at self.max_frames
    num_frames = tf.minimum(num_frames, self.max_frames)

    # concatenate different features
    video_matrix = tf.concat(feature_matrices, 1)

    # convert to batch format.
    # TODO: Do proper batch reads to remove the IO bottleneck.
    batch_video_ids = tf.expand_dims(contexts["video_id"], 0)
    batch_video_matrix = tf.expand_dims(video_matrix, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)

    return batch_video_ids, batch_video_matrix, batch_labels, batch_frames
utilities.py 文件源码 项目:unsupervised-2017-cvprw 作者: imatge-upc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read_my_file_format_dis(filename_queue, is_training):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    context_features = {
        "height": tf.FixedLenFeature([], dtype=tf.int64),
        "width": tf.FixedLenFeature([], dtype=tf.int64),
        "sequence_length": tf.FixedLenFeature([], dtype=tf.int64),
        "text": tf.FixedLenFeature([], dtype=tf.string),
        "label": tf.FixedLenFeature([], dtype=tf.int64)
    }
    sequence_features = {
        "frames": tf.FixedLenSequenceFeature([], dtype=tf.string),
        "masks": tf.FixedLenSequenceFeature([], dtype=tf.string)
    }
    context_parsed, sequence_parsed = tf.parse_single_sequence_example(
        serialized=serialized_example,
        context_features=context_features,
        sequence_features=sequence_features
    )

    height = 128#context_parsed['height'].eval()
    width  = 128#context_parsed['width'].eval()
    sequence_length = 32#context_parsed['sequence_length'].eval()

    clip  = decode_frames(sequence_parsed['frames'], height, width, sequence_length)

    # generate one hot vector
    label = context_parsed['label']
    label = tf.one_hot(label-1, FLAGS.num_class)
    text  = context_parsed['text']

    # randomly sample clips of 16 frames
    if is_training:
        idx = tf.squeeze(tf.random_uniform([1], 0, sequence_length-FLAGS.seq_length+1, dtype=tf.int32))
    else:
        idx = 8
    clip = clip[idx:idx+FLAGS.seq_length] / 255.0 * 2 - 1

    if is_training:
        # randomly reverse data
        reverse   = tf.squeeze(tf.random_uniform([1], 0, 2, dtype=tf.int32))
        clip      = tf.cond(tf.equal(reverse,0), lambda: clip, lambda: clip[::-1])

        # randomly horizontally flip data
        flip      = tf.squeeze(tf.random_uniform([1], 0, 2, dtype=tf.int32))
        clip      = tf.cond(tf.equal(flip,0), lambda: clip, lambda: \
                            tf.map_fn(lambda img: tf.image.flip_left_right(img), clip))

    clip.set_shape([FLAGS.seq_length, height, width, 3])

    return clip, label, text
readers.py 文件源码 项目:youtube-8m 作者: google 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def prepare_serialized_examples(self, serialized_example,
      max_quantized_value=2, min_quantized_value=-2):

    contexts, features = tf.parse_single_sequence_example(
        serialized_example,
        context_features={"video_id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in self.feature_names
        })

    # read ground truth labels
    labels = (tf.cast(
        tf.sparse_to_dense(contexts["labels"].values, (self.num_classes,), 1,
            validate_indices=False),
        tf.bool))

    # loads (potentially) different types of features and concatenates them
    num_features = len(self.feature_names)
    assert num_features > 0, "No feature selected: feature_names is empty!"

    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    num_frames = -1  # the number of frames in the video
    feature_matrices = [None] * num_features  # an array of different features
    for feature_index in range(num_features):
      feature_matrix, num_frames_in_this_feature = self.get_video_matrix(
          features[self.feature_names[feature_index]],
          self.feature_sizes[feature_index],
          self.max_frames,
          max_quantized_value,
          min_quantized_value)
      if num_frames == -1:
        num_frames = num_frames_in_this_feature
      else:
        tf.assert_equal(num_frames, num_frames_in_this_feature)

      feature_matrices[feature_index] = feature_matrix

    # cap the number of frames at self.max_frames
    num_frames = tf.minimum(num_frames, self.max_frames)

    # concatenate different features
    video_matrix = tf.concat(feature_matrices, 1)

    # convert to batch format.
    # TODO: Do proper batch reads to remove the IO bottleneck.
    batch_video_ids = tf.expand_dims(contexts["video_id"], 0)
    batch_video_matrix = tf.expand_dims(video_matrix, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)

    return batch_video_ids, batch_video_matrix, batch_labels, batch_frames
readers.py 文件源码 项目:Video-Classification 作者: boyaolin 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def prepare_serialized_examples(self, serialized_example,
      max_quantized_value=2, min_quantized_value=-2):

    contexts, features = tf.parse_single_sequence_example(
        serialized_example,
        context_features={"video_id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in self.feature_names
        })

    # read ground truth labels
    labels = (tf.cast(
        tf.sparse_to_dense(contexts["labels"].values, (self.num_classes,), 1,
            validate_indices=False),
        tf.bool))

    # loads (potentially) different types of features and concatenates them
    num_features = len(self.feature_names)
    assert num_features > 0, "No feature selected: feature_names is empty!"

    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    num_frames = -1  # the number of frames in the video
    feature_matrices = [None] * num_features  # an array of different features
    for feature_index in range(num_features):
      feature_matrix, num_frames_in_this_feature = self.get_video_matrix(
          features[self.feature_names[feature_index]],
          self.feature_sizes[feature_index],
          self.max_frames,
          max_quantized_value,
          min_quantized_value)
      if num_frames == -1:
        num_frames = num_frames_in_this_feature
      else:
        tf.assert_equal(num_frames, num_frames_in_this_feature)

      feature_matrices[feature_index] = feature_matrix

    # cap the number of frames at self.max_frames
    num_frames = tf.minimum(num_frames, self.max_frames)

    # concatenate different features
    video_matrix = tf.concat(feature_matrices, 1)

    # convert to batch format.
    # TODO: Do proper batch reads to remove the IO bottleneck.
    batch_video_ids = tf.expand_dims(contexts["video_id"], 0)
    batch_video_matrix = tf.expand_dims(video_matrix, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)

    return batch_video_ids, batch_video_matrix, batch_labels, batch_frames
object_detection_dataset.py 文件源码 项目:luminoth 作者: tryolabs 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_record(self, record):
        """Parse record TFRecord into a set a set of values, names and types
        that can be queued and then read.

        Returns:
            - queue_values: Dict with tensor values.
            - queue_names: Names for each tensor.
            - queue_types: Types for each tensor.
        """
        # We parse variable length features (bboxes in a image) as sequence
        # features
        context_example, sequence_example = tf.parse_single_sequence_example(
            record,
            context_features=self.CONTEXT_FEATURES,
            sequence_features=self.SEQUENCE_FEATURES
        )

        # Decode image
        image_raw = tf.image.decode_image(
            context_example['image_raw'], channels=3
        )

        image = tf.cast(image_raw, tf.float32)

        height = tf.cast(context_example['height'], tf.int32)
        width = tf.cast(context_example['width'], tf.int32)
        image_shape = tf.stack([height, width, 3])
        image = tf.reshape(image, image_shape)

        label = self._sparse_to_tensor(sequence_example['label'])
        xmin = self._sparse_to_tensor(sequence_example['xmin'])
        xmax = self._sparse_to_tensor(sequence_example['xmax'])
        ymin = self._sparse_to_tensor(sequence_example['ymin'])
        ymax = self._sparse_to_tensor(sequence_example['ymax'])

        # Stack parsed tensors to define bounding boxes of shape (num_boxes, 5)
        bboxes = tf.stack([xmin, ymin, xmax, ymax, label], axis=1)

        image, bboxes, preprocessing_details = self.preprocess(image, bboxes)

        filename = tf.cast(context_example['filename'], tf.string)

        # TODO: Send additional metadata through the queue (scale_factor,
        # applied_augmentations)

        queue_dtypes = [tf.float32, tf.int32, tf.string]
        queue_names = ['image', 'bboxes', 'filename']
        queue_values = {
            'image': image,
            'bboxes': bboxes,
            'filename': filename,
        }

        return queue_values, queue_dtypes, queue_names


问题


面经


文章

微信
公众号

扫码关注公众号