python类decode_csv()的实例源码

deepSense_HHAR_noConv3D_tf.py 文件源码 项目:DeepSense 作者: yscacaca 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def read_audio_csv(filename_queue):
    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    defaultVal = [[0.] for idx in range(WIDE*FEATURE_DIM + OUT_DIM)]

    fileData = tf.decode_csv(value, record_defaults=defaultVal)
    features = fileData[:WIDE*FEATURE_DIM]
    features = tf.reshape(features, [WIDE, FEATURE_DIM])
    labels = fileData[WIDE*FEATURE_DIM:]
    return features, labels
deepSense_HHAR_noConv3D_load_save.py 文件源码 项目:DeepSense 作者: yscacaca 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_audio_csv(filename_queue):
    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    defaultVal = [[0.] for idx in range(WIDE*FEATURE_DIM + OUT_DIM)]

    fileData = tf.decode_csv(value, record_defaults=defaultVal)
    features = fileData[:WIDE*FEATURE_DIM]
    features = tf.reshape(features, [WIDE, FEATURE_DIM])
    labels = fileData[WIDE*FEATURE_DIM:]
    return features, labels
data_loader.py 文件源码 项目:cyclegan 作者: 4Catalyzer 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _load_samples(csv_name, image_type):
    filename_queue = tf.train.string_input_producer(
        [csv_name])

    reader = tf.TextLineReader()
    _, csv_filename = reader.read(filename_queue)

    record_defaults = [tf.constant([], dtype=tf.string),
                       tf.constant([], dtype=tf.string)]

    filename_i, filename_j = tf.decode_csv(
        csv_filename, record_defaults=record_defaults)

    file_contents_i = tf.read_file(filename_i)
    file_contents_j = tf.read_file(filename_j)
    if image_type == '.jpg':
        image_decoded_A = tf.image.decode_jpeg(
            file_contents_i, channels=model.IMG_CHANNELS)
        image_decoded_B = tf.image.decode_jpeg(
            file_contents_j, channels=model.IMG_CHANNELS)
    elif image_type == '.png':
        image_decoded_A = tf.image.decode_png(
            file_contents_i, channels=model.IMG_CHANNELS, dtype=tf.uint8)
        image_decoded_B = tf.image.decode_png(
            file_contents_j, channels=model.IMG_CHANNELS, dtype=tf.uint8)

    return image_decoded_A, image_decoded_B
datasets.py 文件源码 项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_inputs(self, csv, batch_size, verbose=False):
        print("input csv file path: %s, batch size: %d" % (csv, batch_size))
        filename_queue = tf.train.string_input_producer([csv], shuffle=False)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, label = tf.decode_csv(serialized_example, [["path"], [0]])

        label = tf.cast(label, tf.int32)
        jpg = tf.read_file(filename)
        image = tf.image.decode_jpeg(jpg, channels=3)
        image = tf.cast(image, tf.float32)
        if verbose:
            print "original image shape:"
            print image.get_shape()

        # resize to distort
        dist = tf.image.resize_images(image, (FLAGS.scale_h, FLAGS.scale_w))
        # random crop
        dist = tf.image.resize_image_with_crop_or_pad(dist, FLAGS.input_h, FLAGS.input_w)

        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(FLAGS.num_examples_per_epoch_for_train * min_fraction_of_examples_in_queue)
        print (
        'filling queue with %d train images before starting to train.  This will take a few minutes.' % min_queue_examples)

        return self._generate_image_and_label_batch(dist, label, min_queue_examples, batch_size, shuffle=False)
datasets.py 文件源码 项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def csv_inputs(self, csv, batch_size, distorted=False, verbose=False):
        print("input csv file path: %s, batch size: %d" % (csv, batch_size))
        filename_queue = tf.train.string_input_producer([csv], shuffle=True)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, label = tf.decode_csv(serialized_example, [["path"], [0]])

        label = tf.cast(label, tf.int32)
        jpg = tf.read_file(filename)
        image = tf.image.decode_jpeg(jpg, channels=3)
        image = tf.cast(image, tf.float32)
        if verbose:
            print "original image shape:"
            print image.get_shape()

        if distorted:
            # resize to distort
            dist = tf.image.resize_images(image, (FLAGS.scale_h, FLAGS.scale_w))

            # random crop
            dist = tf.image.resize_image_with_crop_or_pad(dist, FLAGS.input_h, FLAGS.input_w)

            # random flip
            dist = tf.image.random_flip_left_right(dist)

            # color constancy
            #dist = self.distort_color(dist)
        else:
            # resize to input
            dist = tf.image.resize_images(image, FLAGS.input_h, FLAGS.input_w)

        if verbose:
            print "dist image shape:"
            print dist.get_shape()

        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(FLAGS.num_examples_per_epoch_for_train * min_fraction_of_examples_in_queue)
        print ('filling queue with %d train images before starting to train.  This will take a few minutes.' % min_queue_examples)

        return self._generate_image_and_label_batch(dist, label, min_queue_examples, batch_size)
image_processing.py 文件源码 项目:single-image-depth-estimation 作者: liuhyCV 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def train_image(dataset, batch_size=None):

    filename_queue = tf.train.string_input_producer([dataset.file_name()], shuffle=True)
    reader = tf.TextLineReader()
    _, serialized_example = reader.read(filename_queue)
    rgb_filename, depth_filename = tf.decode_csv(serialized_example,
                                                                   [["path"], ["meters"]])
    # input
    rgb_png = tf.read_file(rgb_filename)
    image = tf.image.decode_png(rgb_png, channels=3)
    image = tf.cast(image, tf.float32)

    # target
    depth_png = tf.read_file(depth_filename)
    depth = tf.image.decode_png(depth_png, channels=1)
    depth = tf.cast(depth, tf.float32)
    depth = tf.div(depth, [255.0])
    # depth = tf.cast(depth, tf.int64)
    # resize
    image = tf.image.resize_images(image, (IMAGE_HEIGHT, IMAGE_WIDTH))
    depth = tf.image.resize_images(depth, (TARGET_HEIGHT, TARGET_WIDTH))
    invalid_depth = tf.sign(depth)
    # generate batch
    images, depths, invalid_depths = tf.train.batch(
        [image, depth, invalid_depth],
        batch_size=self.batch_size,
        num_threads=4,
        capacity=50 + 3 * self.batch_size,
    )
    return images, depths, invalid_depths
image_processing.py 文件源码 项目:single-image-depth-estimation 作者: liuhyCV 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def train_batch_inputs(dataset_csv_file_path, batch_size):

    with tf.name_scope('batch_processing'):

        if (os.path.isfile(dataset_csv_file_path) != True):
            raise ValueError('No data files found for this dataset')

        filename_queue = tf.train.string_input_producer([dataset_csv_file_path], shuffle=True)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, depth_filename = tf.decode_csv(serialized_example, [["path"], ["annotation"]])

        # input
        png = tf.read_file(filename)
        image = tf.image.decode_png(png, channels=3)
        image = tf.cast(image, tf.float32)
        # target
        depth_png = tf.read_file(depth_filename)
        depth = tf.image.decode_png(depth_png, dtype=tf.uint16, channels=1)
        depth = tf.cast(depth, dtype=tf.int16)

        # resize
        image = tf.image.resize_images(image, (IMAGE_HEIGHT, IMAGE_WIDTH))
        depth = tf.image.resize_images(depth, (TARGET_HEIGHT, TARGET_WIDTH))
        invalid_depth = tf.sign(depth)

        # generate batch
        images, depths, invalid_depths = tf.train.batch(
            [image, depth, invalid_depth],
            batch_size = batch_size,
            num_threads = 4,
            capacity = 50 + 3 * batch_size
        )
        return images, depths, invalid_depths
image_processing.py 文件源码 项目:single-image-depth-estimation 作者: liuhyCV 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def eval_batch_inputs(dataset_csv_file_path, batch_size):

    with tf.name_scope('eval_batch_processing'):

        if (os.path.isfile(dataset_csv_file_path) != True):
            raise ValueError('No data files found for this dataset')

        filename_queue = tf.train.string_input_producer([dataset_csv_file_path], shuffle=True)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, depth_filename = tf.decode_csv(serialized_example, [["path"], ["annotation"]])

        # input
        png = tf.read_file(filename)
        image = tf.image.decode_png(png, channels=3)
        image = tf.cast(image, tf.float32)
        # target
        depth_png = tf.read_file(depth_filename)
        depth = tf.image.decode_png(depth_png, dtype=tf.uint16, channels=1)
        depth = tf.cast(depth, dtype=tf.int16)

        # resize
        image = tf.image.resize_images(image, (IMAGE_HEIGHT, IMAGE_WIDTH))
        depth = tf.image.resize_images(depth, (TARGET_HEIGHT, TARGET_WIDTH))
        invalid_depth = tf.sign(depth)

        # generate batch
        images, depths, invalid_depths = tf.train.batch(
            [image, depth, invalid_depth],
            batch_size = batch_size,
            num_threads = 4,
            capacity = 50 + 3 * batch_size
        )
        return images, depths, invalid_depths
dataset.py 文件源码 项目:single-image-depth-estimation 作者: liuhyCV 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def csv_inputs(self, csv_file_path):
        filename_queue = tf.train.string_input_producer([csv_file_path], shuffle=True)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, depth_filename, depthMeters_filename = tf.decode_csv(serialized_example, [["path"], ["annotation"], ["meters"]])
        # input
        rgb_png = tf.read_file(filename)
        image = tf.image.decode_png(rgb_png, channels=3)
        image = tf.cast(image, tf.float32)       
        # target
        depth_png = tf.read_file(depth_filename)
        depth = tf.image.decode_png(depth_png, channels=1)
        depth = tf.cast(depth, tf.float32)
        depth = tf.div(depth, [255.0])
        #depth = tf.cast(depth, tf.int64)
        # resize
        image = tf.image.resize_images(image, (IMAGE_HEIGHT, IMAGE_WIDTH))
        depth = tf.image.resize_images(depth, (TARGET_HEIGHT, TARGET_WIDTH))
        invalid_depth = tf.sign(depth)
        # generate batch
        images, depths, invalid_depths = tf.train.batch(
            [image, depth, invalid_depth],
            batch_size=self.batch_size,
            num_threads=4,
            capacity= 50 + 3 * self.batch_size,
        )
        return images, depths, invalid_depths
dataset.py 文件源码 项目:single-image-depth-estimation 作者: liuhyCV 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def csv_inputs_test(self, csv_file_path):
        filename_queue = tf.train.string_input_producer([csv_file_path], shuffle=False)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, depth_filename, depthMeters_filename = tf.decode_csv(serialized_example, [["path"], ["annotation"], ["meters"]])
        # input
        rgb_png = tf.read_file(filename)
        image = tf.image.decode_png(rgb_png, channels=3)
        image = tf.cast(image, tf.float32)
        # target
        depth_png = tf.read_file(depth_filename)
        depth = tf.image.decode_png(depth_png, channels=1)
        depth = tf.cast(depth, tf.float32)
        depth = tf.div(depth, [255.0])
        # resize
        image = tf.image.resize_images(image, (IMAGE_HEIGHT, IMAGE_WIDTH))
        depth = tf.image.resize_images(depth, (TARGET_HEIGHT, TARGET_WIDTH))
        invalid_depth = tf.sign(depth)
        # generate batch
        images, depths, invalid_depths, filenames, depth_filenames = tf.train.batch(
            [image, depth, invalid_depth, filename, depth_filename],
            batch_size=self.batch_size,
            num_threads=4,
            capacity= 50 + 3 * self.batch_size,
        )
        return images, depths, invalid_depths, filenames, depth_filenames
DataHandeling.py 文件源码 项目:DeepCellSeg 作者: arbellea 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _get_image(self):

        _, records = self.reader.read(self.input_queue)
        file_names = tf.decode_csv(records, [tf.constant([],  tf.string), tf.constant([], tf.string)], field_delim=None,
                                   name=None)

        im_raw = tf.read_file(self.base_folder+file_names[0])
        seg_raw = tf.read_file(self.base_folder+file_names[1])
        image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                           self.image_size, name='input_image')
        seg = tf.reshape(tf.cast(tf.image.decode_png(seg_raw, channels=1, dtype=tf.uint8), tf.float32),
                         self.image_size, name='input_seg')

        return image, seg, file_names[0]
input.py 文件源码 项目:FacialRecognitionSystem 作者: kenzo0107 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def load_data(csv, batch_size, shuffle = True, distored = True):
    queue = tf.train.string_input_producer(csv, shuffle=shuffle)
    reader = tf.TextLineReader()
    key, value = reader.read(queue)
    filename, label = tf.decode_csv(value, [["path"],[1]], field_delim=" ")

    label = tf.cast(label, tf.int64)
    label = tf.one_hot(label, depth = get_count_member(), on_value = 1.0, off_value = 0.0, axis = -1)

    jpeg = tf.read_file(filename)
    image = tf.image.decode_jpeg(jpeg, channels=3)
    image = tf.cast(image, tf.float32)
    image.set_shape([IMAGE_SIZE, IMAGE_SIZE, 3])

    if distored:
        cropsize = random.randint(INPUT_SIZE, INPUT_SIZE + (IMAGE_SIZE - INPUT_SIZE) / 2)
        framesize = INPUT_SIZE + (cropsize - INPUT_SIZE) * 2
        image = tf.image.resize_image_with_crop_or_pad(image, framesize, framesize)
        image = tf.random_crop(image, [cropsize, cropsize, 3])
        image = tf.image.random_flip_left_right(image)
        image = tf.image.random_brightness(image, max_delta=0.8)
        image = tf.image.random_contrast(image, lower=0.8, upper=1.0)
        image = tf.image.random_hue(image, max_delta=0.04)
        image = tf.image.random_saturation(image, lower=0.6, upper=1.4)

    image = tf.image.resize_images(image, DST_INPUT_SIZE, DST_INPUT_SIZE)
    image = tf.image.per_image_whitening(image)

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue)

    return _generate_image_and_label_batch(
            image,
            label,
            filename,
            min_queue_examples, batch_size,
            shuffle=shuffle)
lstm_crf.py 文件源码 项目:deeplearning 作者: fanfanfeng 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def read_csv(batch_size,file_name):
    filename_queue = tf.train.string_input_producer([file_name])
    reader = tf.TextLineReader(skip_header_lines=0)
    key,value = reader.read(filename_queue)

    decoded =  tf.decode_csv(value,field_delim=' ',
                             record_defaults=[[0] for i in range(nlp_segment.flags.max_sentence_len*2)])
    return tf.train.shuffle_batch(decoded,
                                  batch_size=batch_size,
                                  capacity=batch_size*50,
                                  min_after_dequeue=batch_size)
lstm_crf.py 文件源码 项目:deeplearning 作者: fanfanfeng 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read_csv(batch_size,file_name):
    filename_queue = tf.train.string_input_producer([file_name])
    reader = tf.TextLineReader(skip_header_lines=0)
    key,value = reader.read(filename_queue)

    decoded =  tf.decode_csv(value,field_delim=' ',
                             record_defaults=[[0] for i in range(ner_tv.flags.sentence_length*2)])
    return tf.train.shuffle_batch(decoded,
                                  batch_size=batch_size,
                                  capacity=batch_size*50,
                                  min_after_dequeue=batch_size)
tfpipeline.py 文件源码 项目:TF-FaceLandmarkDetection 作者: mariolew 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read_my_file_format(filename):


    record_defaults = [[""]] + [[1.0]] * 10
    components = tf.decode_csv(filename, record_defaults=record_defaults, 
        field_delim=" ")
    imgName = components[0]
    features = components[1:]
    img_contents = tf.read_file(imgName)
    img = tf.image.decode_jpeg(img_contents, channels=1)
    return img, features
ADMMutils.py 文件源码 项目:sparsecnn 作者: fkiaee 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def ImageProducer_imagenet(filename_queue,isotropic):
    line_reader = tf.TextLineReader()
    key, line = line_reader.read(filename_queue)
     # line_batch or line (depending if you want to batch)
    filename, label = tf.decode_csv(line,record_defaults=[tf.constant([],dtype=tf.string),tf.constant([],dtype=tf.int32)],field_delim=' ')
    file_contents = tf.read_file(filename)
    example = tf.image.decode_jpeg(file_contents)
    processed_img = process_image(example,isotropic)
    # Convert from RGB channel ordering to BGR This matches, for instance, how OpenCV orders the channels.
    processed_img = tf.reverse(processed_img, [False, False, True])  
    #processed_img.set_shape([224, 224, 3])
    return processed_img, label
model.py 文件源码 项目:kaggle-youtube-8m 作者: liufuyang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def parse_csv(rows_string_tensor):
  """Takes the string input tensor and returns a dict of rank-2 tensors."""

  # Takes a rank-1 tensor and converts it into rank-2 tensor
  # Example if the data is ['csv,line,1', 'csv,line,2', ..] to
  # [['csv,line,1'], ['csv,line,2']] which after parsing will result in a
  # tuple of tensors: [['csv'], ['csv']], [['line'], ['line']], [[1], [2]]
  row_columns = tf.expand_dims(rows_string_tensor, -1)
  columns = tf.decode_csv(row_columns, record_defaults=CSV_COLUMN_DEFAULTS)
  features = dict(zip(CSV_COLUMNS, columns))

  # Remove unused columns
  for col in UNUSED_COLUMNS:
    features.pop(col)
  return features
tf_wide_and_deep.py 文件源码 项目:provectus-final-project 作者: eds-uga 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def input_fn(batch_size,file_name):
    """
    :param batch_size:
    :param file_name:
    :return: features and label dict
    """
    examples_op = tf.contrib.learn.read_batch_examples(
        file_name,
        batch_size=batch_size,
        reader=tf.TextLineReader,
        num_epochs=1,

        parse_fn=lambda x: tf.decode_csv(x, [tf.constant([''], dtype=tf.string)] * len(COLUMNS),field_delim=","))

    examples_dict = {}

    for i, header in enumerate(COLUMNS):
        examples_dict[header] = examples_op[:,i]




    feature_cols = {k: tf.string_to_number(examples_dict[k], out_type=tf.float32)
                    for k in CONTINUOUS_COLUMNS}

    feature_cols.update({k: dense_to_sparse(examples_dict[k])
                         for k in CATEGORICAL_COLUMNS})

    label = tf.string_to_number(examples_dict[LABEL_COLUMN], out_type=tf.int32)

    return feature_cols, label
wide_deep_evaluate_predict.py 文件源码 项目:provectus-final-project 作者: eds-uga 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def input_fn_eval(batch_size,file_name):
    """
     Input function to predict the test features
    :param batch_size:
    :param file_name:
    :return: features and label dict
    """
    examples_op = tf.contrib.learn.read_batch_examples(
        file_name,
        batch_size=batch_size,
        reader=tf.TextLineReader,
        randomize_input=False,
        read_batch_size=1,
        num_threads=5,
        num_epochs=1,
        parse_fn=lambda x: tf.decode_csv(x, [tf.constant([''], dtype=tf.string)] * len(COLUMNS),field_delim=","))
    examples_dict = {}

    for i, header in enumerate(COLUMNS):
        examples_dict[header] = examples_op[:,i]


    feature_cols = {k: tf.string_to_number(examples_dict[k], out_type=tf.float32)
                    for k in CONTINUOUS_COLUMNS}

    feature_cols.update({k: dense_to_sparse(examples_dict[k])
                         for k in CATEGORICAL_COLUMNS})


    return feature_cols
coco_inputs.py 文件源码 项目:image-caption-baseline 作者: raingo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _parse_example_proto(example_serialized):
  # parse record
  # decode jpeg
  # random select one caption, convert it into integers
  # compute the length of the caption
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string),
      'image/coco-id': tf.FixedLenFeature([], dtype=tf.int64),
      'caption': tf.VarLenFeature(dtype=tf.string),
      # 'image/path': tf.FixedLenFeature([], dtype=tf.string),
  }

  features = tf.parse_single_example(example_serialized, feature_map)

  cocoid = features['image/coco-id']
  image = tf.image.decode_jpeg(
      features['image/encoded'],
      channels=3,
      try_recover_truncated=True)
  # the image COCO_train2014_000000167126.jpg was corrupted
  # replaced that image in my train2014/ directory
  # but do not want to re encode everything, so just try_recover_truncated
  # which is just part of the image

  # [0,255) --> [0,1)
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)

  #image_path = features['image/path']

  caption = tf.sparse_tensor_to_dense(features['caption'], default_value=".")
  caption = tf.random_shuffle(caption)[0]
  record_defaults = [[PAD]] * MAX_SEQ_LEN
  caption_tids = tf.decode_csv(caption, record_defaults)
  caption_tids = tf.pack(caption_tids)

  return image, caption_tids, cocoid #, image_path


问题


面经


文章

微信
公众号

扫码关注公众号