python类decode_csv()的实例源码

datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _abspath_no_label_load_file(path, epochs=None, shuffle=True, seed=0):
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
    image_path = value

    image_abspath = image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]

    return image, imgshape, image_path
blog_dset_estmtrs.py 文件源码 项目:TFExperiments 作者: gnperdue 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def my_input(file_path, perform_shuffle=False, repeat_count=1):
    """
    create an input function reading a file with the Dataset API
    """
    def decode_csv(line):
        parsed_line = tf.decode_csv(line, [[0.], [0.], [0.], [0.], [0]])
        label = parsed_line[-1:]
        del parsed_line[-1]
        features = parsed_line
        d = dict(zip(feature_names, features)), label
        return d

    dataset = (tf.data.TextLineDataset(file_path).skip(1).map(decode_csv))
    if perform_shuffle:
        dataset = dataset.shuffle(buffer_size=256)
    dataset = dataset.repeat(repeat_count)
    dataset = dataset.batch(32)
    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    return batch_features, batch_labels
PASCALVOC2012Localization.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _read_image_and_box(self, bboxes_csv):
        """Extract the filename from the queue, read the image and
        produce a single box
        Returns:
            image, [y_min, x_min, y_max, x_max, label]
        """

        reader = tf.TextLineReader(skip_header_lines=True)
        _, row = reader.read(bboxes_csv)
        # file ,y_min, x_min, y_max, x_max, label
        record_defaults = [[""], [0.], [0.], [0.], [0.], [0.]]
        # eg:
        # 2008_000033,0.1831831831831832,0.208,0.7717717717717718,0.952,0
        filename, y_min, x_min, y_max, x_max, label = tf.decode_csv(
            row, record_defaults)
        image_path = os.path.join(self._data_dir, 'VOCdevkit', 'VOC2012',
                                  'JPEGImages') + "/" + filename + ".jpg"

        # image is normalized in [-1,1]
        image = read_image_jpg(image_path)
        return image, tf.stack([y_min, x_min, y_max, x_max, label])
lstm_cnn_train.py 文件源码 项目:LSTM-CNN-CWS 作者: MeteorYee 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_csv(batch_size, file_name):
    filename_queue = tf.train.string_input_producer([file_name])
    reader = tf.TextLineReader(skip_header_lines=0)
    key, value = reader.read(filename_queue)
    # decode_csv will convert a Tensor from type string (the text line) in
    # a tuple of tensor columns with the specified defaults, which also
    # sets the data type for each column
    decoded = tf.decode_csv(
        value,
        field_delim=' ',
        record_defaults=[[0] for i in range(FLAGS.max_sentence_len * 2)])

    # batch actually reads the file and loads "batch_size" rows in a single tensor
    return tf.train.shuffle_batch(decoded,
                                  batch_size=batch_size,
                                  capacity=batch_size * 50,
                                  min_after_dequeue=batch_size)
clock_data.py 文件源码 项目:deep-time-reading 作者: felixduvallet 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_image_and_label(image_label_q):
    # Returns three Tensors: the decoded PNG image, the hour, and the minute.
    filename, hour_str, minute_str = tf.decode_csv(
        image_label_q.dequeue(), [[""], [""], [""]], " ")
    file_contents = tf.read_file(filename)

    # Decode image from PNG, and cast it to a float.
    example = tf.image.decode_png(file_contents, channels=image_channels)
    image = tf.cast(example, tf.float32)

    # Set the tensor size manually from the image.
    image.set_shape([image_size, image_size, image_channels])

    # Do per-image whitening (zero mean, unit standard deviation). Without this,
    # the learning algorithm diverges almost immediately because the gradient is
    # too big.
    image = tf.image.per_image_whitening(image)

    # The label should be an integer.
    hour = tf.string_to_number(hour_str, out_type=tf.int32)
    minute = tf.string_to_number(minute_str, out_type=tf.int32)

    return image, hour, minute
PASCALVOC2012Classification.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _read_image_and_box(self, bboxes_csv):
        """Extract the filename from the queue, read the image and
        produce a single box
        Returns:
            image, box
        """

        reader = tf.TextLineReader(skip_header_lines=True)
        _, row = reader.read(bboxes_csv)
        # file ,y_min, x_min, y_max, x_max, label
        record_defaults = [[""], [0.], [0.], [0.], [0.], [0.]]
        # eg:
        # 2008_000033,0.1831831831831832,0.208,0.7717717717717718,0.952,0
        filename, y_min, x_min, y_max, x_max, label = tf.decode_csv(
            row, record_defaults)
        image_path = os.path.join(self._data_dir, 'VOCdevkit', 'VOC2012',
                                  'JPEGImages') + "/" + filename + ".jpg"

        # image is normalized in [-1,1], convert to #_image_depth depth
        image = read_image_jpg(image_path, depth=self._image_depth)
        return image, tf.stack([y_min, x_min, y_max, x_max, label])
datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _voc_seg_load_file(path, epochs=None, shuffle=True, seed=0):

    PASCAL_ROOT = os.environ['VOC_DIR']
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    image_path, seg_path = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')

    image_abspath = PASCAL_ROOT + image_path
    seg_abspath = PASCAL_ROOT + seg_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]
    imgname = image_path

    seg_content = tf.read_file(seg_abspath)
    seg = tf.cast(tf.image.decode_png(seg_content, channels=1), tf.int32)
    return image, seg, imgshape, imgname
datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _imagenet_load_file(path, epochs=None, shuffle=True, seed=0, subset='train', prepare_path=True):
    IMAGENET_ROOT = os.environ.get('IMAGENET_DIR', '')
    if not isinstance(path, list):
        path = [path]
    filename_queue = tf.train.string_input_producer(path,
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    image_path, label_str = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')

    if prepare_path:
        image_abspath = IMAGENET_ROOT + '/images/' + subset + image_path
    else:
        image_abspath = image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]
    label = tf.string_to_number(label_str, out_type=tf.int32)

    return image, label, imgshape, image_path
datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _relpath_no_label_load_file(path, root_path, epochs=None, shuffle=True, seed=0):
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
    image_path = value

    image_abspath = root_path + '/' + image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]

    return image, imgshape, image_path
DataHandeling.py 文件源码 项目:DeepCellSeg 作者: arbellea 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _get_image(self):
        _, records = self.reader.read(self.input_queue)
        file_names = tf.decode_csv(records, [tf.constant([], tf.string), tf.constant([], tf.string)],
                                   field_delim=None, name=None)

        im_raw = tf.read_file(self.base_folder+file_names[0])
        seg_raw = tf.read_file(self.base_folder+file_names[1])
        image = tf.reshape(
                            tf.cast(tf.image.decode_png(
                                                    im_raw,
                                                    channels=1, dtype=tf.uint16),
                                    tf.float32), self.image_size, name='input_image')
        seg = tf.reshape(
                        tf.cast(tf.image.decode_png(
                                                    seg_raw,
                                                    channels=1, dtype=tf.uint8),
                                tf.float32), self.image_size, name='input_seg')

        return image, seg, file_names[0]
ann_creation_helper.py 文件源码 项目:ChessAI 作者: SamRagusa 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def acquire_data_ops(filename_queue, processing_method, record_defaults=None):
    """
    Get the line/lines from the files in the given filename queue,
    read/decode them, and give them to the given method for processing
    the information.
    """
    with tf.name_scope("acquire_data"):
        # with tf.device("/cpu:0"):
        if record_defaults is None:
            record_defaults = [[""]]
        reader = tf.TextLineReader()
        key, value = reader.read(filename_queue)
        row = tf.decode_csv(value, record_defaults=record_defaults)
        #The 3 is because this is used for training and it trains on triplets
        return processing_method(row[0], 3), tf.constant(True, dtype=tf.bool)
reader.py 文件源码 项目:DeepBot 作者: IgorWang 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def read_data(filename_queue, bucket):
    '''

    :param filename_queue:file queue
    :param bucket:(encoder_length,decoder_length)
    :return:
    '''

    class DataRecord(object):
        pass

    result = DataRecord()

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    recoder_defaults = [[1] for i in range(bucket[0] + bucket[1])]
    recoder = tf.decode_csv(value,
                            record_defaults=recoder_defaults)

    # encoder_input
    result.encoder = tf.pack(recoder[0:bucket[0]])
    # decoder_input
    result.decoder = tf.pack(recoder[bucket[0]:])

    return result
dataset.py 文件源码 项目:irelia 作者: jireh-father 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def make_dataset(self, filenames, batch_size, shuffle_buffer_size=100, num_dataset_parallel=4):
        def decode_line(line):
            items = tf.decode_csv(line, [[""], [""], [""]], field_delim=",")
            return items

        if len(filenames) > 1:
            dataset = tf.data.Dataset.from_tensor_slices(filenames)

            dataset = dataset.flat_map(
                lambda filename: (
                    tf.data.TextLineDataset(filename).map(decode_line, num_dataset_parallel)))
        else:
            dataset = tf.data.TextLineDataset(filenames).map(decode_line, num_dataset_parallel)

        if shuffle_buffer_size > 0:
            dataset = dataset.shuffle(shuffle_buffer_size)

        self.dataset_iterator = dataset.batch(batch_size).make_initializable_iterator()
        self.num_samples = Dataset.get_number_of_items(filenames)
lstm_crf_train.py 文件源码 项目:LSTM-CNN-CWS 作者: MeteorYee 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_csv(batch_size, file_name):
    filename_queue = tf.train.string_input_producer([file_name])
    reader = tf.TextLineReader(skip_header_lines=0)
    key, value = reader.read(filename_queue)
    # decode_csv will convert a Tensor from type string (the text line) in
    # a tuple of tensor columns with the specified defaults, which also
    # sets the data type for each column
    decoded = tf.decode_csv(
        value,
        field_delim=' ',
        record_defaults=[[0] for i in range(FLAGS.max_sentence_len * 2)])

    # batch actually reads the file and loads "batch_size" rows in a single tensor
    return tf.train.shuffle_batch(decoded,
                                  batch_size=batch_size,
                                  capacity=batch_size * 50,
                                  min_after_dequeue=batch_size)
05_csv_reader.py 文件源码 项目:deeplearning 作者: fanfanfeng 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def batch_generator(filenames):
    """ filenames is the list of files you want to read from.
    In this case, it contains only heart.csv
    """
    filename_queue = tf.train.string_input_producer(filenames)
    reader = tf.TextLineReader(skip_header_lines=1)
    _,value = reader.read(filename_queue)

    record_defaults = [[1.0] for _ in range(N_FEATURES)]
    record_defaults[4] = ['']
    record_defaults.append([1])

    content = tf.decode_csv(value,record_defaults=record_defaults)
    content[4] = tf.cond(tf.equal(content[4],tf.constant('Present')),lambda : tf.constant(1.0),lambda :tf.constant(0.0))

    features = tf.stack(content[:N_FEATURES])
    label = content[-1]

    min_after_dequeue = 10 * BATCH_SIZE
    capacity = 20 * BATCH_SIZE

    data_batch,laebl_batch = tf.train.shuffle_batch([features,label],batch_size=BATCH_SIZE,capacity=capacity,min_after_dequeue=min_after_dequeue)
    return data_batch,laebl_batch
lstm_crf_old.py 文件源码 项目:deeplearning 作者: fanfanfeng 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def read_csv(batch_size, file_name):
    filename_queue = tf.train.string_input_producer([file_name])
    reader = tf.TextLineReader(skip_header_lines=0)
    key, value = reader.read(filename_queue)
    # decode_csv will convert a Tensor from type string (the text line) in
    # a tuple of tensor columns with the specified defaults, which also
    # sets the data type for each column
    decoded = tf.decode_csv(
        value,
        field_delim=' ',
        record_defaults=[[0] for i in range(FLAGS.max_sentence_len * 2)])

    # batch actually reads the file and loads "batch_size" rows in a single tensor
    return tf.train.shuffle_batch(decoded,
                                  batch_size=batch_size,
                                  capacity=batch_size * 50,
                                  min_after_dequeue=batch_size)
lstm_crf_old.py 文件源码 项目:deeplearning 作者: fanfanfeng 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_csv(batch_size, file_name):
    filename_queue = tf.train.string_input_producer([file_name])
    reader = tf.TextLineReader(skip_header_lines=0)
    key, value = reader.read(filename_queue)
    # decode_csv will convert a Tensor from type string (the text line) in
    # a tuple of tensor columns with the specified defaults, which also
    # sets the data type for each column
    decoded = tf.decode_csv(
        value,
        field_delim=' ',
        record_defaults=[[0] for i in range(FLAGS.max_sentence_len * 2)])

    # batch actually reads the file and loads "batch_size" rows in a single tensor
    return tf.train.shuffle_batch(decoded,
                                  batch_size=batch_size,
                                  capacity=batch_size * 50,
                                  min_after_dequeue=batch_size)
wide_deep_evaluate_predict.py 文件源码 项目:provectus-final-project 作者: eds-uga 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def input_fn(batch_size,file_name):
    """
    Input function creates feautre and label dict for cross-validation
    :param batch_size:
    :param file_name:
    :return: feature dict
    """
    examples_op = tf.contrib.learn.read_batch_examples(
        file_name,
        batch_size=batch_size,
        reader=tf.TextLineReader,
    num_threads=5,
        num_epochs=1,
        randomize_input=False,
        parse_fn=lambda x: tf.decode_csv(x, [tf.constant([''], dtype=tf.string)] * len(COLUMNS),field_delim=","))

    examples_dict = {}

    for i, header in enumerate(COLUMNS):
        examples_dict[header] = examples_op[:,i]


    feature_cols = {k: tf.string_to_number(examples_dict[k], out_type=tf.float32)
                    for k in CONTINUOUS_COLUMNS}

    feature_cols.update({k: dense_to_sparse(examples_dict[k])
                         for k in CATEGORICAL_COLUMNS})

    label = tf.string_to_number(examples_dict[LABEL_COLUMN], out_type=tf.int32)

    return feature_cols, label
queue_substances.py 文件源码 项目:DeepSEA 作者: momeara 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def smiles_labels_batch_queue(eval_params):
    fname_queue = tf.train.string_input_producer(
        [eval_params['substances_fname']],
        num_epochs=None,
        shuffle=True,
        name="substances_fname_queue")

    reader = tf.TextLineReader(
        skip_header_lines=1,
        name="substance_file_reader")
    _, record = reader.read(queue=fname_queue)
    substance_id, smiles, label = tf.decode_csv(
        records=record,
        record_defaults=[[""], [""], [1.0]],
        field_delim=eval_params['substances_field_delim'])
    smiles_batch, labels_batch = tf.train.shuffle_batch(
        tensors = [smiles, label],
        batch_size = eval_params['batch_size'],
        capacity = eval_params['queue_capacity'],
        min_after_dequeue = eval_params['queue_min_after_dequeue'],
        num_threads = eval_params['queue_num_threads'],
        seed = eval_params['queue_seed'])
    return smiles_batch, labels_batch
queue_substances.py 文件源码 项目:DeepSEA 作者: momeara 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def smiles_triple_batch_queue(eval_params):
    fname_queue = tf.train.string_input_producer(
        [eval_params['substances_fname']],
        num_epochs=None,
        shuffle=True,
        name="substances_fname_queue")

    reader = tf.TextLineReader(
        skip_header_lines=1,
        name="substance_file_reader")
    _, record = reader.read(queue=fname_queue)
    # entries = [
    #   target_id,
    #   substance_id, smiles,
    #   substance_plus_id, smiles_plus
    #   substance_minus_id, smiles_minus]
    entries = tf.decode_csv(
        records=record,
        record_defaults=[[""], [""], [""], [""], [""], [""], [""]],
        field_delim=eval_params['substances_field_delim'])
pascifar.py 文件源码 项目:pgnet 作者: galeone 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_pascifar(pascifar_path, queue):
    """ Reads and parses files from the queue.
    Args:
        pascifar_path: a constant string tensor representing the path of the PASCIFAR dataset
        queue: A queue of strings in the format: file, label

    Returns:
        image_path: a tf.string tensor. The absolute path of the image in the dataset
        label: a int64 tensor with the label
    """

    # Reader for text lines
    reader = tf.TextLineReader(skip_header_lines=1)

    # read a record from the queue
    _, row = reader.read(queue)

    # file,width,height,label
    record_defaults = [[""], [0]]

    image_path, label = tf.decode_csv(row, record_defaults, field_delim=",")

    image_path = pascifar_path + tf.constant("/") + image_path
    label = tf.cast(label, tf.int64)
    return image_path, label
bbbc006_input.py 文件源码 项目:dcan-tensorflow 作者: lisjin 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def read_bbbc006(all_files_queue):
    """Reads and parses examples from BBBC006 data files.
    Recommendation: if you want N-way read parallelism, call this function
    N times.  This will give you N independent Readers reading different
    files & positions within those files, which will give better mixing of
    examples.

    Args:
        filename_queue: A queue of strings with the filenames to read from.
    Returns:
        An object representing a single example, with the following fields:
            label: a [height, width, 2] uint8 Tensor with contours tensor in depth 0 and
                segments tensor in depth 1.
            uint8image: a [height, width, depth] uint8 Tensor with the image data
    """

    class BBBC006Record(object):
        pass

    result = BBBC006Record()

    # Read a record, getting filenames from the filename_queue.
    text_reader = tf.TextLineReader()
    _, csv_content = text_reader.read(all_files_queue)

    i_path, c_path, s_path = tf.decode_csv(csv_content,
                                           record_defaults=[[""], [""], [""]])

    result.uint8image = read_from_queue(tf.read_file(i_path))
    contour = read_from_queue(tf.read_file(c_path))
    segment = read_from_queue(tf.read_file(s_path))

    result.label = tf.concat([contour, segment], 2)
    return result
data_handler.py 文件源码 项目:tf-crnn 作者: solivr 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def data_loader(csv_filename: str, params: Params, batch_size: int=128, data_augmentation: bool=False,
                num_epochs: int=None, image_summaries: bool=False):

    def input_fn():
        # Choose case one csv file or list of csv files
        if not isinstance(csv_filename, list):
            filename_queue = tf.train.string_input_producer([csv_filename], num_epochs=num_epochs, name='filename_queue')
        elif isinstance(csv_filename, list):
            filename_queue = tf.train.string_input_producer(csv_filename, num_epochs=num_epochs, name='filename_queue')

        # Skip lines that have already been processed
        reader = tf.TextLineReader(name='CSV_Reader', skip_header_lines=0)
        key, value = reader.read(filename_queue, name='file_reading_op')

        default_line = [['None'], ['None']]
        path, label = tf.decode_csv(value, record_defaults=default_line, field_delim=params.csv_delimiter,
                                    name='csv_reading_op')

        image, img_width = image_reading(path, resized_size=params.input_shape,
                                         data_augmentation=data_augmentation, padding=True)

        to_batch = {'images': image, 'images_widths': img_width, 'filenames': path, 'labels': label}
        prepared_batch = tf.train.shuffle_batch(to_batch,
                                                batch_size=batch_size,
                                                min_after_dequeue=500,
                                                num_threads=15, capacity=4000,
                                                allow_smaller_final_batch=False,
                                                name='prepared_batch_queue')

        if image_summaries:
            tf.summary.image('input/image', prepared_batch.get('images'), max_outputs=1)
        tf.summary.text('input/labels', prepared_batch.get('labels')[:10])
        tf.summary.text('input/widths', tf.as_string(prepared_batch.get('images_widths')))

        return prepared_batch, prepared_batch.get('labels')

    return input_fn
model.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def parse_csv(rows_string_tensor):
  """Takes the string input tensor and returns a dict of rank-2 tensors."""
  columns = tf.decode_csv(
      rows_string_tensor, record_defaults=CSV_COLUMN_DEFAULTS)
  features = dict(zip(CSV_COLUMNS, columns))

  # Remove unused columns
  for col in UNUSED_COLUMNS:
    features.pop(col)

  for key, value in six.iteritems(features):
    features[key] = tf.expand_dims(features[key], -1)
  return features
model.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def parse_csv(rows_string_tensor):
  """Takes the string input tensor and returns a dict of rank-2 tensors."""

  # Takes a rank-1 tensor and converts it into rank-2 tensor
  # Example if the data is ['csv,line,1', 'csv,line,2', ..] to
  # [['csv,line,1'], ['csv,line,2']] which after parsing will result in a
  # tuple of tensors: [['csv'], ['csv']], [['line'], ['line']], [[1], [2]]
  columns = tf.decode_csv(
      rows_string_tensor, record_defaults=CSV_COLUMN_DEFAULTS)
  features = dict(zip(CSV_COLUMNS, columns))

  # Remove unused columns
  for col in UNUSED_COLUMNS:
    features.pop(col)
  return features
model.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def parse_csv(rows_string_tensor):
  """Takes the string input tensor and returns a dict of rank-2 tensors."""

  # Takes a rank-1 tensor and converts it into rank-2 tensor
  # Example if the data is ['csv,line,1', 'csv,line,2', ..] to
  # [['csv,line,1'], ['csv,line,2']] which after parsing will result in a
  # tuple of tensors: [['csv'], ['csv']], [['line'], ['line']], [[1], [2]]
  row_columns = tf.expand_dims(rows_string_tensor, -1)
  columns = tf.decode_csv(row_columns, record_defaults=CSV_COLUMN_DEFAULTS)
  features = dict(zip(CSV_COLUMNS, columns))

  # Remove unused columns
  for col in UNUSED_COLUMNS:
    features.pop(col)
  return features
AutoEncoder.py 文件源码 项目:AutoEncoder 作者: tsuday 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def read_my_file_format(self, filename_queue):
        reader = tf.TextLineReader()
        key, record_string = reader.read(filename_queue)
        # "a" means representative value to indicate type for csv cell value.
        image_file_name, depth_file_name = tf.decode_csv(record_string, [["a"], ["a"]])

        image_png_data = tf.read_file(image_file_name)
        depth_png_data = tf.read_file(depth_file_name)
        # channels=1 means image is read as gray-scale
        image_decoded = tf.image.decode_png(image_png_data, channels=1)
        image_decoded.set_shape([512, 512, 1])
        depth_decoded = tf.image.decode_png(depth_png_data, channels=1)
        depth_decoded.set_shape([512, 512, 1])
        return image_decoded, depth_decoded
batch_data_test.py 文件源码 项目:tensorflow-deep-qa 作者: shuishen112 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def batch_generator(filenames):
    """ filenames is the list of files you want to read from. 
    In this case, it contains only heart.csv
    """
    filename_queue = tf.train.string_input_producer(filenames)
    reader = tf.TextLineReader(skip_header_lines=1) # skip the first line in the file
    _, value = reader.read(filename_queue)
    record_defaults = [[''] for _ in range(N_FEATURES)]
    # read in the 10 rows of data
    content = tf.decode_csv(value, record_defaults = record_defaults,field_delim = '\t') 


    # pack all 9 features into a tensor
    features = tf.stack(content[:N_FEATURES - 1])

    # assign the last column to label
    label = content[-1]

    # minimum number elements in the queue after a dequeue, used to ensure 
    # that the samples are sufficiently mixed
    # I think 10 times the BATCH_SIZE is sufficient
    min_after_dequeue = 10 * BATCH_SIZE

    # the maximum number of elements in the queue
    capacity = 20 * BATCH_SIZE

    # shuffle the data to generate BATCH_SIZE sample pairs
    data_batch, label_batch = tf.train.batch([features, label], batch_size=BATCH_SIZE, 
                                        capacity=capacity, min_after_dequeue = min_after_dequeue,
                                        allow_smaller_final_batch=True)

    return data_batch, label_batch
    # return features,label
image_inputs.py 文件源码 项目:TF-FaceDetection 作者: mariolew 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def read_my_file_format(filename):

    record_defaults = [[""]] + [[0]]

    components = tf.decode_csv(filename, record_defaults=record_defaults, field_delim=" ")
    imgName = components[0]
    label = components[1:]
    img_contents = tf.read_file(imgName)
    img = tf.image.decode_jpeg(img_contents, channels=3)

    return img, label
deepSense_HHAR_tf.py 文件源码 项目:DeepSense 作者: yscacaca 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_audio_csv(filename_queue):
    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    defaultVal = [[0.] for idx in range(WIDE*FEATURE_DIM + OUT_DIM)]

    fileData = tf.decode_csv(value, record_defaults=defaultVal)
    features = fileData[:WIDE*FEATURE_DIM]
    features = tf.reshape(features, [WIDE, FEATURE_DIM])
    labels = fileData[WIDE*FEATURE_DIM:]
    return features, labels


问题


面经


文章

微信
公众号

扫码关注公众号