python类scan()的实例源码

layers.py 文件源码 项目:maml_rl 作者: cbfinn 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
        if 'recurrent_state' in kwargs and self in kwargs['recurrent_state']:
            h0s = kwargs['recurrent_state'][self]
        else:
            h0s = tf.tile(
                tf.reshape(self.h0, (1, self.num_units)),
                (n_batches, 1)
            )
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=h0s
        )
        shuffled_hs = tf.transpose(hs, (1, 0, 2))
        if 'recurrent_state_output' in kwargs:
            kwargs['recurrent_state_output'][self] = shuffled_hs
        return shuffled_hs
layers.py 文件源码 项目:maml_rl 作者: cbfinn 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        h0s = self.nonlinearity(c0s)
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hcs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=tf.concat(axis=1, values=[h0s, c0s])
        )
        shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
        shuffled_hs = shuffled_hcs[:, :, :self.num_units]
        shuffled_cs = shuffled_hcs[:, :, self.num_units:]
        return shuffled_hs
text.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def ctc_label_dense_to_sparse(labels, label_lengths, batch_size):
    # The second dimension of labels must be equal to the longest label length in the batch
    correct_shape_assert = tf.assert_equal(tf.shape(labels)[1], tf.reduce_max(label_lengths))
    with tf.control_dependencies([correct_shape_assert]):
        labels = tf.identity(labels)

    label_shape = tf.shape(labels)
    num_batches_tns = tf.stack([label_shape[0]])
    max_num_labels_tns = tf.stack([label_shape[1]])
    def range_less_than(previous_state, current_input):
        return tf.expand_dims(tf.range(label_shape[1]), 0) < current_input

    init = tf.cast(tf.fill(max_num_labels_tns, 0), tf.bool)
    init = tf.expand_dims(init, 0)
    dense_mask = tf.scan(range_less_than, label_lengths, initializer=init, parallel_iterations=1)
    dense_mask = dense_mask[:, 0, :]

    label_array = tf.reshape(tf.tile(tf.range(0, label_shape[1]), num_batches_tns),
          label_shape)
    label_ind = tf.boolean_mask(label_array, dense_mask)

    batch_array = tf.transpose(tf.reshape(tf.tile(tf.range(0, label_shape[0]), max_num_labels_tns), tf.reverse(label_shape, [0])))
    batch_ind = tf.boolean_mask(batch_array, dense_mask)

    indices = tf.transpose(tf.reshape(tf.concat([batch_ind, label_ind], 0), [2, -1]))
    shape = [batch_size, tf.reduce_max(label_lengths)]
    vals_sparse = gather_nd(labels, indices, shape)

    return tf.SparseTensor(tf.to_int64(indices), vals_sparse, tf.to_int64(label_shape))

# Validate and normalize transcriptions. Returns a cleaned version of the label
# or None if it's invalid.
text_RHL.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def ctc_label_dense_to_sparse(labels, label_lengths, batch_size):
    # The second dimension of labels must be equal to the longest label length in the batch
    correct_shape_assert = tf.assert_equal(tf.shape(labels)[1], tf.reduce_max(label_lengths))
    with tf.control_dependencies([correct_shape_assert]):
        labels = tf.identity(labels)

    label_shape = tf.shape(labels)
    num_batches_tns = tf.stack([label_shape[0]])
    max_num_labels_tns = tf.stack([label_shape[1]])
    def range_less_than(previous_state, current_input):
        return tf.expand_dims(tf.range(label_shape[1]), 0) < current_input

    init = tf.cast(tf.fill(max_num_labels_tns, 0), tf.bool)
    init = tf.expand_dims(init, 0)
    dense_mask = tf.scan(range_less_than, label_lengths, initializer=init, parallel_iterations=1)
    dense_mask = dense_mask[:, 0, :]

    label_array = tf.reshape(tf.tile(tf.range(0, label_shape[1]), num_batches_tns),
          label_shape)
    label_ind = tf.boolean_mask(label_array, dense_mask)

    batch_array = tf.transpose(tf.reshape(tf.tile(tf.range(0, label_shape[0]), max_num_labels_tns), tf.reverse(label_shape, [0])))
    batch_ind = tf.boolean_mask(batch_array, dense_mask)

    indices = tf.transpose(tf.reshape(tf.concat([batch_ind, label_ind], 0), [2, -1]))
    shape = [batch_size, tf.reduce_max(label_lengths)]
    vals_sparse = gather_nd(labels, indices, shape)

    return tf.SparseTensor(tf.to_int64(indices), vals_sparse, tf.to_int64(label_shape))

# Validate and normalize transcriptions. Returns a cleaned version of the label
# or None if it's invalid.
statistics.py 文件源码 项目:a-nice-mc 作者: ermongroup 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, energy_fn, prior, std=1.0,
                 inter_op_parallelism_threads=1, intra_op_parallelism_threads=1):
        self.energy_fn = energy_fn
        self.prior = prior
        self.z = self.energy_fn.z

        def fn(z, x):
            z_ = z + tf.random_normal(tf.shape(self.z), 0.0, std)
            accept = metropolis_hastings_accept(
                energy_prev=energy_fn(z),
                energy_next=energy_fn(z_)
            )
            return tf.where(accept, z_, z)

        self.steps = tf.placeholder(tf.int32, [])
        elems = tf.zeros([self.steps])
        self.z_ = tf.scan(
            fn, elems, self.z, back_prop=False
        )

        self.sess = tf.Session(
            config=tf.ConfigProto(
                inter_op_parallelism_threads=inter_op_parallelism_threads,
                intra_op_parallelism_threads=intra_op_parallelism_threads
            )
        )
        self.sess.run(tf.global_variables_initializer())
nice.py 文件源码 项目:a-nice-mc 作者: ermongroup 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __call__(self, inputs, steps, nice_steps=1):
        def nice_proposal(zv, x):
            """
            Nice Proposal (without Metropolis-Hastings).
            `z` is the input state.
            `v` is created as a dummy variable to allow output of v_, for debugging purposes.
            :param zv:
            :param x:
            :return: next state `z_`, and the corresponding auxiliary variable `v_' (without MH).
            """
            z, v = zv
            z_, v_ = self.network([z, v], is_backward=(x < 0.5)) #(tf.random_uniform([]) < 0.5))
            return z_, v_

        def fn(zv, x):
            """
            Transition with Metropolis-Hastings.
            `z` is the input state.
            `v` is created as a dummy variable to allow output of v_, for debugging purposes.
            :param zv: [z, v]. It is written in this form merely to appeal to Python 3.
            :param x: variable only for specifying the number of steps
            :return: next state `z_`, and the corresponding auxiliary variable `v_`.
            """
            z, v = zv
            v = tf.random_normal(shape=tf.stack([tf.shape(z)[0], self.network.v_dim]))
            # z_, v_ = self.network([z, v], is_backward=(tf.random_uniform([]) < 0.5))
            z_, v_ = tf.scan(nice_proposal, x * tf.random_uniform([]), (z, v), back_prop=False)
            z_, v_ = z_[-1], v_[-1]
            ep = hamiltonian(z, v, self.energy_fn)
            en = hamiltonian(z_, v_, self.energy_fn)
            accept = metropolis_hastings_accept(energy_prev=ep, energy_next=en)
            z_ = tf.where(accept, z_, z)
            return z_, v_

        elems = tf.ones([steps, nice_steps])
        return tf.scan(fn, elems, inputs, back_prop=False)
segment.py 文件源码 项目:jack 作者: uclmr 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def segment_sample_select(probs, segment_ids):
    num_segments = tf.reduce_max(segment_ids) + 1
    sampled = tf.random_uniform([num_segments])

    def scan_fn(acc, x):
        p, i = x[0], x[1]
        prev_v = tf.gather(acc[0], i)
        new_probs = acc[0] + tf.one_hot(i, num_segments, p)
        select = tf.logical_and(tf.less(prev_v, 0.0), tf.greater_equal(prev_v + p, 0.0))
        return new_probs, select

    _, selection = tf.scan(scan_fn, (probs, segment_ids), initializer=(-sampled, False))

    return selection
layers.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        state = tf.tile(
            tf.reshape(self.h0, (1, self.num_units)),
            (n_batches, 1)
        )
        state.set_shape((None, self.num_units))
        if self.horizon is not None:
            outputs = []
            for idx in range(self.horizon):
                output, state = self.gru(input[:, idx, :], state, scope=self.scope)  # self.name)
                outputs.append(tf.expand_dims(output, 1))
            outputs = tf.concat(1, outputs)
            return outputs
        else:
            n_steps = input_shape[1]
            input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
            # flatten extra dimensions
            shuffled_input = tf.transpose(input, (1, 0, 2))
            shuffled_input.set_shape((None, None, self.input_shape[-1]))
            hs = tf.scan(
                self.step,
                elems=shuffled_input,
                initializer=state
            )
            shuffled_hs = tf.transpose(hs, (1, 0, 2))
            return shuffled_hs
layers.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
        h0s = tf.tile(
            tf.reshape(self.h0, (1, self.num_units)),
            (n_batches, 1)
        )
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hcs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=tf.concat(1, [h0s, c0s])
        )
        shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
        shuffled_hs = shuffled_hcs[:, :, :self.num_units]
        shuffled_cs = shuffled_hcs[:, :, self.num_units:]
        if 'recurrent_state_output' in kwargs:
            kwargs['recurrent_state_output'][self] = shuffled_hcs
        return shuffled_hs
layers.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        h0s = tf.tile(
            tf.reshape(self.h0, (1, self.num_units)),
            (n_batches, 1)
        )
        h0s.set_shape((None, self.num_units))
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        c0s.set_shape((None, self.num_units))
        state = (c0s, h0s)
        if self.horizon is not None:
            outputs = []
            for idx in range(self.horizon):
                output, state = self.lstm(input[:, idx, :], state, scope=self.scope)  # self.name)
                outputs.append(tf.expand_dims(output, 1))
            outputs = tf.concat(1, outputs)
            return outputs
        else:
            n_steps = input_shape[1]
            input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
            # flatten extra dimensions
            shuffled_input = tf.transpose(input, (1, 0, 2))
            shuffled_input.set_shape((None, None, self.input_shape[-1]))
            hcs = tf.scan(
                self.step,
                elems=shuffled_input,
                initializer=tf.concat(1, [h0s, c0s]),
            )
            shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
            shuffled_hs = shuffled_hcs[:, :, :self.num_units]
            shuffled_cs = shuffled_hcs[:, :, self.num_units:]
            return shuffled_hs
layers.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        state = tf.tile(
            tf.reshape(self.h0, (1, self.num_units)),
            (n_batches, 1)
        )
        state.set_shape((None, self.num_units))
        if self.horizon is not None:
            outputs = []
            for idx in range(self.horizon):
                output, state = self.gru(input[:, idx, :], state, scope=self.scope)  # self.name)
                outputs.append(tf.expand_dims(output, 1))
            outputs = tf.concat(axis=1, values=outputs)
            return outputs
        else:
            n_steps = input_shape[1]
            input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
            # flatten extra dimensions
            shuffled_input = tf.transpose(input, (1, 0, 2))
            shuffled_input.set_shape((None, None, self.input_shape[-1]))
            hs = tf.scan(
                self.step,
                elems=shuffled_input,
                initializer=state
            )
            shuffled_hs = tf.transpose(hs, (1, 0, 2))
            return shuffled_hs
layers.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
        h0s = tf.tile(
            tf.reshape(self.h0, (1, self.num_units)),
            (n_batches, 1)
        )
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hcs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=tf.concat(axis=1, values=[h0s, c0s])
        )
        shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
        shuffled_hs = shuffled_hcs[:, :, :self.num_units]
        shuffled_cs = shuffled_hcs[:, :, self.num_units:]
        if 'recurrent_state_output' in kwargs:
            kwargs['recurrent_state_output'][self] = shuffled_hcs
        return shuffled_hs
layers.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        h0s = tf.tile(
            tf.reshape(self.h0, (1, self.num_units)),
            (n_batches, 1)
        )
        h0s.set_shape((None, self.num_units))
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        c0s.set_shape((None, self.num_units))
        state = (c0s, h0s)
        if self.horizon is not None:
            outputs = []
            for idx in range(self.horizon):
                output, state = self.lstm(input[:, idx, :], state, scope=self.scope)  # self.name)
                outputs.append(tf.expand_dims(output, 1))
            outputs = tf.concat(axis=1, values=outputs)
            return outputs
        else:
            n_steps = input_shape[1]
            input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
            # flatten extra dimensions
            shuffled_input = tf.transpose(input, (1, 0, 2))
            shuffled_input.set_shape((None, None, self.input_shape[-1]))
            hcs = tf.scan(
                self.step,
                elems=shuffled_input,
                initializer=tf.concat(axis=1, values=[h0s, c0s]),
            )
            shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
            shuffled_hs = shuffled_hcs[:, :, :self.num_units]
            shuffled_cs = shuffled_hcs[:, :, self.num_units:]
            return shuffled_hs
math.py 文件源码 项目:antgo 作者: jianzfb 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def cummax(x, reverse=False, name=None):
    """Compute the cumulative maximum of the tensor `x` along `axis`. This
    operation is similar to the more classic `cumsum`. Only support 1D Tensor
    for now.

    Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
       axis: A `Tensor` of type `int32` (default: 0).
       reverse: A `bool` (default: False).
       name: A name for the operation (optional).
    Returns:
    A `Tensor`. Has the same type as `x`.
    """
    with ops.name_scope(name, "Cummax", [x]) as name:
        x = ops.convert_to_tensor(x, name="x")
        # Not very optimal: should directly integrate reverse into tf.scan.
        if reverse:
            x = tf.reverse(x, axis=[0])
        # 'Accumlating' maximum: ensure it is always increasing.
        cmax = tf.scan(lambda a, y: tf.maximum(a, y), x,
                       initializer=None, parallel_iterations=1,
                       back_prop=False, swap_memory=False)
        if reverse:
            cmax = tf.reverse(cmax, axis=[0])
        return cmax
train_policy_gradient_tf.py 文件源码 项目:strategy 作者: kanghua309 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def tf_discount_rewards(self, tf_r):  # tf_r ~ [game_steps,1]
        discount_f = lambda a, v: a * self._gamma + v;
        tf_r_reverse = tf.scan(discount_f, tf.reverse(tf_r, [True, False]))
        tf_discounted_r = tf.reverse(tf_r_reverse, [True, False])
        return tf_discounted_r
nn.py 文件源码 项目:rltools 作者: sisl 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def output(self):
        """Iterate through hidden states to get outputs for all"""
        input_shape = tf.shape(self._input_B_T_Di)
        input = tf.reshape(self._input_B_T_Di, tf.pack([input_shape[0], input_shape[1], -1]))
        h0s = tf.tile(tf.reshape(self.h0, (1, self._hidden_units)), (input_shape[0], 1))
        # Flatten extra dimension
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hs = tf.scan(self.step, elems=shuffled_input, initializer=h0s)
        shuffled_hs = tf.transpose(hs, (1, 0, 2))
        return shuffled_hs
math.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cummax(x, reverse=False, name=None):
    """Compute the cumulative maximum of the tensor `x` along `axis`. This
    operation is similar to the more classic `cumsum`. Only support 1D Tensor
    for now.

    Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
       axis: A `Tensor` of type `int32` (default: 0).
       reverse: A `bool` (default: False).
       name: A name for the operation (optional).
    Returns:
    A `Tensor`. Has the same type as `x`.
    """
    with ops.name_scope(name, "Cummax", [x]) as name:
        x = ops.convert_to_tensor(x, name="x")
        # Not very optimal: should directly integrate reverse into tf.scan.
        if reverse:
            x = tf.reverse(x, axis=[0])
        # 'Accumlating' maximum: ensure it is always increasing.
        cmax = tf.scan(lambda a, y: tf.maximum(a, y), x,
                       initializer=None, parallel_iterations=1,
                       back_prop=False, swap_memory=False)
        if reverse:
            cmax = tf.reverse(cmax, axis=[0])
        return cmax
detnet.py 文件源码 项目:social-scene-understanding 作者: cvlab-epfl 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def compute_detections_greedy(seg_preds, boxes_preds, num_outputs,
                              seg_threshold=0.2,
                              sigma=5e-3, step=0.2, num_iters=20,
                              dist_threshold=20.0):

  mask_flat = tf.reshape(seg_preds[:,:,1], [-1])
  boxes_flat = tf.reshape(boxes_preds, [-1, 4])

  # TODO: also collect (y,x) coordinates
  idxs = tf.where(mask_flat > seg_threshold)[:,0]
  boxes = tf.gather(boxes_flat, idxs)
  boxes, confidence = refine_boxes(boxes, num_iters, step, sigma)

  num_boxes = tf.shape(boxes)[0]

  dists = tf.nn.relu(nnutil.pairwise_distance(boxes / sigma))
  weights = tf.exp(-dists)

  def _next_detection(prev, i):
    _, _, presence = prev
    confidence_curr = tf.reduce_sum(weights * presence, [1], True)
    idx = tf.to_int32(tf.argmax(confidence_curr, 0)[0])
    mask = tf.to_float(tf.gather(dists, idx) > dist_threshold)[:,tf.newaxis]
    presence = presence * mask
    confidence = tf.gather(confidence_curr, idx)[0]
    return idx, confidence, presence

  idxs, confidence, presences = tf.scan(_next_detection,
                                         tf.range(0, num_outputs),
                                         initializer=(0,
                                                      0.0,
                                                      tf.ones([num_boxes,1])))
  return tf.gather(boxes, idxs), confidence
model.py 文件源码 项目:tensorforce 作者: reinforceio 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def tf_discounted_cumulative_reward(self, terminal, reward, discount, final_reward=0.0):
        """
        Creates the TensorFlow operations for calculating the discounted cumulative rewards
        for a given sequence of rewards.

        Args:
            terminal: Terminal boolean tensor.
            reward: Reward tensor.
            discount: Discount factor.
            final_reward: Last reward value in the sequence.

        Returns:
            Discounted cumulative reward tensor.
        """

        # TODO: n-step cumulative reward (particularly for envs without terminal)

        def cumulate(cumulative, reward_and_terminal):
            rew, term = reward_and_terminal
            return tf.where(
                condition=term,
                x=rew,
                y=(rew + cumulative * discount)
            )

        # Reverse since reward cumulation is calculated right-to-left, but tf.scan only works left-to-right
        reward = tf.reverse(tensor=reward, axis=(0,))
        terminal = tf.reverse(tensor=terminal, axis=(0,))

        reward = tf.scan(fn=cumulate, elems=(reward, terminal), initializer=final_reward)

        return tf.reverse(tensor=reward, axis=(0,))
layers.py 文件源码 项目:gail-driver 作者: sisl 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        state = tf.tile(
            tf.reshape(self.h0, (1, self.num_units)),
            (n_batches, 1)
        )
        state.set_shape((None, self.num_units))
        if self.horizon is not None:
            outputs = []
            for idx in range(self.horizon):
                output, state = self.gru(
                    input[:, idx, :], state, scope=self.scope)  # self.name)
                outputs.append(tf.expand_dims(output, 1))
            outputs = tf.concat(1, outputs)
            return outputs
        else:
            n_steps = input_shape[1]
            input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
            # flatten extra dimensions
            shuffled_input = tf.transpose(input, (1, 0, 2))
            shuffled_input.set_shape((None, None, self.input_shape[-1]))
            hs = tf.scan(
                self.step,
                elems=shuffled_input,
                initializer=state
            )
            shuffled_hs = tf.transpose(hs, (1, 0, 2))
            return shuffled_hs


问题


面经


文章

微信
公众号

扫码关注公众号