python类scan()的实例源码

TestUpd.py 文件源码 项目:How-to-Learn-from-Little-Data 作者: llSourcell 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def omniglot():

    sess = tf.InteractiveSession()

    """    def wrapper(v):
        return tf.Print(v, [v], message="Printing v")

    v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix')

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp')
    temp = wrapper(v)
    #with tf.control_dependencies([temp]):
    temp.eval()
    print 'Hello'"""

    def update_tensor(V, dim2, val):  # Update tensor V, with index(:,dim2[:]) by val[:]
        val = tf.cast(val, V.dtype)
        def body(_, (v, d2, chg)):
            d2_int = tf.cast(d2, tf.int32)
            return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]])
        Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update")
        return Z
nice.py 文件源码 项目:a-nice-mc 作者: ermongroup 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __call__(self, inputs, steps):
        def fn(zv, x):
            """
            Transition for training, without Metropolis-Hastings.
            `z` is the input state.
            `v` is created as a dummy variable to allow output of v_, for training p(v).
            :param x: variable only for specifying the number of steps
            :return: next state `z_`, and the corresponding auxiliary variable `v_`.
            """
            z, v = zv
            v = tf.random_normal(shape=tf.stack([tf.shape(z)[0], self.network.v_dim]))
            z_, v_ = self.network.forward([z, v])
            return z_, v_

        elems = tf.zeros([steps])
        return tf.scan(fn, elems, inputs, back_prop=True)
prior.py 文件源码 项目:attend_infer_repeat 作者: akosiorek 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _cumprod(tensor, axis=0):
    """A custom version of cumprod to prevent NaN gradients when there are zeros in `tensor`
    as reported here: https://github.com/tensorflow/tensorflow/issues/3862

    :param tensor: tf.Tensor
    :return: tf.Tensor
    """
    transpose_permutation = None
    n_dim = len(tensor.get_shape())
    if n_dim > 1 and axis != 0:

        if axis < 0:
            axis += n_dim

        transpose_permutation = np.arange(n_dim)
        transpose_permutation[-1], transpose_permutation[0] = 0, axis

    tensor = tf.transpose(tensor, transpose_permutation)

    def prod(acc, x):
        return acc * x

    prob = tf.scan(prod, tensor)
    tensor = tf.transpose(prob, transpose_permutation)
    return tensor
TestUpd.py 文件源码 项目:NTM-One-Shot-TF 作者: hmishra2250 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def omniglot():

    sess = tf.InteractiveSession()

    """    def wrapper(v):
        return tf.Print(v, [v], message="Printing v")

    v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix')

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp')
    temp = wrapper(v)
    #with tf.control_dependencies([temp]):
    temp.eval()
    print 'Hello'"""

    def update_tensor(V, dim2, val):  # Update tensor V, with index(:,dim2[:]) by val[:]
        val = tf.cast(val, V.dtype)
        def body(_, (v, d2, chg)):
            d2_int = tf.cast(d2, tf.int32)
            return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]])
        Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update")
        return Z
layers.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
        if 'recurrent_state' in kwargs and self in kwargs['recurrent_state']:
            h0s = kwargs['recurrent_state'][self]
        else:
            h0s = tf.tile(
                tf.reshape(self.h0, (1, self.num_units)),
                (n_batches, 1)
            )
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=h0s
        )
        shuffled_hs = tf.transpose(hs, (1, 0, 2))
        if 'recurrent_state_output' in kwargs:
            kwargs['recurrent_state_output'][self] = shuffled_hs
        return shuffled_hs
layers.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        h0s = self.nonlinearity(c0s)
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hcs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=tf.concat(1, [h0s, c0s])
        )
        shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
        shuffled_hs = shuffled_hcs[:, :, :self.num_units]
        shuffled_cs = shuffled_hcs[:, :, self.num_units:]
        return shuffled_hs
layers.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
        if 'recurrent_state' in kwargs and self in kwargs['recurrent_state']:
            h0s = kwargs['recurrent_state'][self]
        else:
            h0s = tf.tile(
                tf.reshape(self.h0, (1, self.num_units)),
                (n_batches, 1)
            )
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=h0s
        )
        shuffled_hs = tf.transpose(hs, (1, 0, 2))
        if 'recurrent_state_output' in kwargs:
            kwargs['recurrent_state_output'][self] = shuffled_hs
        return shuffled_hs
layers.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 64 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        h0s = self.nonlinearity(c0s)
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hcs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=tf.concat(axis=1, values=[h0s, c0s])
        )
        shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
        shuffled_hs = shuffled_hcs[:, :, :self.num_units]
        shuffled_cs = shuffled_hcs[:, :, self.num_units:]
        return shuffled_hs
model_seg+pos.py 文件源码 项目:tensorflow-CWS-LSTM 作者: elvinpoon 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def seg_prediction(self):
        outputs, size, batch_size = self.outputs
        num_class = self.config.num_class
        output_w = weight_variable([size, num_class])
        output_b = bias_variable([num_class])
        # outputs = tf.transpose(outputs,[1,0,2])
        tag_trans = weight_variable([num_class, num_class])

        def transition(p, x):
            res = tf.matmul(x, output_w) + output_b
            # deviation = tf.tile(tf.expand_dims(tf.reduce_min(previous_pred, reduction_indices=1), 1),
            #                    [1, num_class])

            # previous_pred -= deviation
            focus = 1.
            res += tf.matmul(p, tag_trans) * focus

            prediction = tf.nn.softmax(res)
            return prediction

        # Recurrent network.
        pred = tf.scan(transition, outputs, initializer=tf.zeros([batch_size, num_class]), parallel_iterations=100)
        pred = tf.transpose(pred, [1, 0, 2])
        return pred
model_seg+pos.py 文件源码 项目:tensorflow-CWS-LSTM 作者: elvinpoon 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def pos_prediction(self):
        outputs, size, batch_size = self.outputs
        num_class = len(POS_tagging['P'])

        output_w = weight_variable([size, num_class])
        output_b = bias_variable([num_class])
        # outputs = tf.transpose(outputs,[1,0,2])
        tag_trans = weight_variable([num_class, num_class])
        outputs = tf.reverse(outputs, [True, False, False])
        def transition(previous_pred, x):
            res = tf.matmul(x, output_w) + output_b
            deviation = tf.tile(tf.expand_dims(tf.reduce_min(previous_pred, reduction_indices=1), 1),
                                [1, num_class])

            previous_pred -= deviation
            focus = 0.5
            res += tf.matmul(previous_pred, tag_trans) * focus
            prediction = tf.nn.softmax(res)
            return prediction
        # Recurrent network.
        pred = tf.scan(transition, outputs, initializer=tf.zeros([batch_size, num_class]), parallel_iterations=100)
        pred = tf.reverse(pred, [True, False, False])
        pred = tf.transpose(pred, [1, 0, 2])
        return pred
lstm.py 文件源码 项目:yaset 作者: jtourille 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def loss_crf(self):
        """
        CRF based loss.
        :return: loss
        """

        # Reshaping seq_len tensor [seq_len, 1]
        seq_length_reshaped = tf.reshape(self.x_tokens_len, [tf.shape(self.x_tokens_len)[0], -1])

        # Computing loss by scanning mini-batch tensor
        out = tf.scan(self.loss_crf_scan, [self.prediction,
                                           seq_length_reshaped,
                                           self.y], back_prop=True, infer_shape=True, initializer=0.0)

        # Division by batch_size
        loss_crf = tf.divide(tf.reduce_sum(out), tf.cast(tf.shape(self.x_tokens)[0], dtype=tf.float32))

        return loss_crf
detnet.py 文件源码 项目:social-scene-understanding 作者: cvlab-epfl 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def refine_boxes(boxes, num_iters, step, sigma):
  assert num_iters > 1

  def iteration(prev, i):
    state_prev, _ = prev
    features = state_prev / sigma
    dists = tf.nn.relu(nnutil.pairwise_distance(features))
    weights = tf.exp(-dists)
    confidence = tf.reduce_sum(weights, [1], True)
    weights = weights / confidence
    state_up = tf.matmul(weights, state_prev)
    return (1.0 - step) * state_prev + step * state_up, confidence

  states = tf.scan(iteration,
                   tf.range(0, num_iters),
                   initializer=(boxes, boxes[:,0:1]))
  return states[0][-1], states[1][-1]
networks.py 文件源码 项目:Sisyphus 作者: davidbrandfonbrener 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def compute_predictions_scan(self):

        state = self.init_state
        rnn_states = \
            tf.scan(
                self.rnn_step_scan,
                tf.transpose(self.x, [1, 0, 2]),
                initializer=state,
                parallel_iterations=1)
        rnn_outputs = \
            tf.scan(
                self.output_step_scan,
                rnn_states,
                initializer=tf.zeros([self.N_batch, self.N_out]),
                parallel_iterations= 1)
        return tf.transpose(rnn_outputs, [1, 0, 2]), tf.unstack(rnn_states)


    # fix spectral radius of recurrent matrix
layers.py 文件源码 项目:gail-driver 作者: sisl 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
        if 'recurrent_state' in kwargs and self in kwargs['recurrent_state']:
            h0s = kwargs['recurrent_state'][self]
        else:
            h0s = tf.tile(
                tf.reshape(self.h0, (1, self.num_units)),
                (n_batches, 1)
            )
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=h0s
        )
        shuffled_hs = tf.transpose(hs, (1, 0, 2))
        if 'recurrent_state_output' in kwargs:
            kwargs['recurrent_state_output'][self] = shuffled_hs
        return shuffled_hs
layers.py 文件源码 项目:gail-driver 作者: sisl 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.pack([n_batches, n_steps, -1]))
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        h0s = self.nonlinearity(c0s)
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hcs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=tf.concat(1, [h0s, c0s])
        )
        shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
        shuffled_hs = shuffled_hcs[:, :, :self.num_units]
        shuffled_cs = shuffled_hcs[:, :, self.num_units:]
        return shuffled_hs
T_LSTM_AE.py 文件源码 项目:T-LSTM 作者: illidanlab 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_decoder_states(self):
        batch_size = tf.shape(self.input)[0]
        seq_length = tf.shape(self.input)[1]
        scan_input_ = tf.transpose(self.input, perm=[2, 0, 1])
        scan_input_ = tf.transpose(scan_input_)  # scan input is [seq_length x batch_size x input_dim]
        z = tf.zeros([1, batch_size, self.input_dim], dtype=tf.float32)
        scan_input = tf.concat([scan_input_,z],0)
        scan_input = tf.slice(scan_input, [1,0,0],[seq_length ,batch_size, self.input_dim])
        scan_input = tf.reverse(scan_input, [0])#tf.reverse(scan_input, [True, False, False])
        scan_time_ = tf.transpose(self.time)  # scan_time [seq_length x batch_size]
        z2 = tf.zeros([1, batch_size], dtype=tf.float32)
        scan_time = tf.concat([scan_time_, z2],0)
        scan_time = tf.slice(scan_time, [1,0],[seq_length ,batch_size])
        scan_time = tf.reverse(scan_time, [0])#tf.reverse(scan_time, [True, False])
        initial_hidden, initial_cell = self.get_representation()
        ini_state_cell = tf.stack([initial_hidden, initial_cell])
        # make scan_time [seq_length x batch_size x 1]
        scan_time = tf.reshape(scan_time, [tf.shape(scan_time)[0], tf.shape(scan_time)[1], 1])
        concat_input = tf.concat([scan_time, scan_input],2)  # [seq_length x batch_size x input_dim+1]
        packed_hidden_states = tf.scan(self.T_LSTM_Decoder_Unit, concat_input, initializer=ini_state_cell, name='decoder_states')
        all_decoder_states = packed_hidden_states[:, 0, :, :]
        return all_decoder_states
lstm.py 文件源码 项目:tag_srl 作者: danfriedman0 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __call__(self, inputs, init_state=None):
        if init_state is None:
            init_state = self.zero_state
        init_states = tf.unstack(init_state)
        next_inputs = inputs
        for i, cell in enumerate(self.cells):
            with tf.variable_scope('bilstm_%d' % i):
                with tf.variable_scope('forward'):
                    f_outputs = cell.scan(next_inputs, init_states[i])
                with tf.variable_scope('backward'):
                    r_inputs = tf.reverse(next_inputs, axis=(0,))
                    rb_outputs = cell.scan(r_inputs, init_states[i])
                    b_outputs = tf.reverse(rb_outputs, axis=(0,))
                outputs = tf.concat([f_outputs, b_outputs], axis=2)
                next_inputs = tf.nn.dropout(outputs, keep_prob=self.dropout)
        return next_inputs
gru.py 文件源码 项目:rnn-from-scratch 作者: suriyadeepan 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def parse_args():
    parser = argparse.ArgumentParser(
        description='Gated Recurrent Unit RNN for Text Hallucination, built with tf.scan')
    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument('-g', '--generate', action='store_true',
                        help='generate text')
    group.add_argument('-t', '--train', action='store_true',
                        help='train model')
    parser.add_argument('-n', '--num_words', required=False, type=int,
                        help='number of words to generate')
    args = vars(parser.parse_args())
    return args


###
# main function
lstm.py 文件源码 项目:rnn-from-scratch 作者: suriyadeepan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def parse_args():
    parser = argparse.ArgumentParser(
        description='Long Short Term Memory RNN for Text Hallucination, built with tf.scan')
    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument('-g', '--generate', action='store_true',
                        help='generate text')
    group.add_argument('-t', '--train', action='store_true',
                        help='train model')
    parser.add_argument('-n', '--num_words', required=False, type=int,
                        help='number of words to generate')
    args = vars(parser.parse_args())
    return args


###
# main function
lstm-stacked.py 文件源码 项目:rnn-from-scratch 作者: suriyadeepan 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def parse_args():
    parser = argparse.ArgumentParser(
        description='Stacked Long Short Term Memory RNN for Text Hallucination, built with tf.scan')
    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument('-g', '--generate', action='store_true',
                        help='generate text')
    group.add_argument('-t', '--train', action='store_true',
                        help='train model')
    parser.add_argument('-n', '--num_words', required=False, type=int,
                        help='number of words to generate')
    args = vars(parser.parse_args())
    return args


###
# main function
gru-stacked.py 文件源码 项目:rnn-from-scratch 作者: suriyadeepan 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def parse_args():
    parser = argparse.ArgumentParser(
        description='Stacked Gated Recurrent Unit RNN for Text Hallucination, built with tf.scan')
    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument('-g', '--generate', action='store_true',
                        help='generate text')
    group.add_argument('-t', '--train', action='store_true',
                        help='train model')
    parser.add_argument('-n', '--num_words', required=False, type=int,
                        help='number of words to generate')
    args = vars(parser.parse_args())
    return args


###
# main function
layers.py 文件源码 项目:rllab 作者: rll 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
        if 'recurrent_state' in kwargs and self in kwargs['recurrent_state']:
            h0s = kwargs['recurrent_state'][self]
        else:
            h0s = tf.tile(
                tf.reshape(self.h0, (1, self.num_units)),
                (n_batches, 1)
            )
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=h0s
        )
        shuffled_hs = tf.transpose(hs, (1, 0, 2))
        if 'recurrent_state_output' in kwargs:
            kwargs['recurrent_state_output'][self] = shuffled_hs
        return shuffled_hs
layers.py 文件源码 项目:rllab 作者: rll 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_output_for(self, input, **kwargs):
        input_shape = tf.shape(input)
        n_batches = input_shape[0]
        n_steps = input_shape[1]
        input = tf.reshape(input, tf.stack([n_batches, n_steps, -1]))
        c0s = tf.tile(
            tf.reshape(self.c0, (1, self.num_units)),
            (n_batches, 1)
        )
        h0s = self.nonlinearity(c0s)
        # flatten extra dimensions
        shuffled_input = tf.transpose(input, (1, 0, 2))
        hcs = tf.scan(
            self.step,
            elems=shuffled_input,
            initializer=tf.concat(axis=1, values=[h0s, c0s])
        )
        shuffled_hcs = tf.transpose(hcs, (1, 0, 2))
        shuffled_hs = shuffled_hcs[:, :, :self.num_units]
        shuffled_cs = shuffled_hcs[:, :, self.num_units:]
        return shuffled_hs
filter.py 文件源码 项目:kvae 作者: simonkamronn 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def backward_step_fn(self, params, inputs):
        """
        Backwards step over a batch, to be used in tf.scan
        :param params:
        :param inputs: (batch_size, variable dimensions)
        :return:
        """
        mu_back, Sigma_back = params
        mu_pred_tp1, Sigma_pred_tp1, mu_filt_t, Sigma_filt_t, A = inputs

        # J_t = tf.matmul(tf.reshape(tf.transpose(tf.matrix_inverse(Sigma_pred_tp1), [0, 2, 1]), [-1, self.dim_z]),
        #                 self.A)
        # J_t = tf.transpose(tf.reshape(J_t, [-1, self.dim_z, self.dim_z]), [0, 2, 1])
        J_t = tf.matmul(tf.transpose(A, [0, 2, 1]), tf.matrix_inverse(Sigma_pred_tp1))
        J_t = tf.matmul(Sigma_filt_t, J_t)

        mu_back = mu_filt_t + tf.matmul(J_t, mu_back - mu_pred_tp1)
        Sigma_back = Sigma_filt_t + tf.matmul(J_t, tf.matmul(Sigma_back - Sigma_pred_tp1, J_t, adjoint_b=True))

        return mu_back, Sigma_back
filter.py 文件源码 项目:kvae 作者: simonkamronn 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def compute_forwards(self, reuse=None):
        """Compute the forward step in the Kalman filter.
           The forward pass is intialized with p(z_1)=N(self.mu, self.Sigma).
           We then return the mean and covariances of the predictive distribution p(z_t|z_tm1,u_t), t=2,..T+1
           and the filtering distribution p(z_t|x_1:t,u_1:t), t=1,..T
           We follow the notation of Murphy's book, section 18.3.1
        """

        # To make sure we are not accidentally using the real outputs in the steps with missing values, set them to 0.
        y_masked = tf.multiply(tf.expand_dims(self.mask, 2), self.y)
        inputs = tf.concat([y_masked, self.u, tf.expand_dims(self.mask, 2)], axis=2)

        y_prev = tf.expand_dims(self.y_0, 0)  # (1, dim_y)
        y_prev = tf.tile(y_prev, (tf.shape(self.mu)[0], 1))
        alpha, state, u, buffer = self.alpha(y_prev, self.state, self.u[:, 0], init_buffer=True, reuse= reuse)

        # dummy matrix to initialize B and C in scan
        dummy_init_A = tf.ones([self.Sigma.get_shape()[0], self.dim_z, self.dim_z])
        dummy_init_B = tf.ones([self.Sigma.get_shape()[0], self.dim_z, self.dim_u])
        dummy_init_C = tf.ones([self.Sigma.get_shape()[0], self.dim_y, self.dim_z])
        forward_states = tf.scan(self.forward_step_fn, tf.transpose(inputs, [1, 0, 2]),
                                 initializer=(self.mu, self.Sigma, self.mu, self.Sigma, alpha, u, state, buffer,
                                              dummy_init_A, dummy_init_B, dummy_init_C),
                                 parallel_iterations=1, name='forward')
        return forward_states
forward_model.py 文件源码 项目:Buffe 作者: bentzinir 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def decode(self, input):
        # returns a decoder
        hidden = tf.matmul(input, self.weights["decoder1_weights"]) + self.weights["decoder1_biases"]
        hidden_relu = tf.nn.relu(hidden)

        # output is encoding_size x 1 x small_encoding_size
        # multiheaded_hidden = tf.matmul(input, self.weights["multiheaded1_weights"]) + self.weights["multiheaded1_biases"]
        # multiheaded_hidden = tf.reshape(multiheaded_hidden, [-1, self.arch_params['output_dim'], 1, self.arch_params['small_encoding_dim']])
        # multiheaded_hidden = tf.nn.relu(multiheaded_hidden)
        #
        # h = tf.scan(lambda a,x: tf.batch_matmul(x, self.weights["multiheaded2_weights"]), multiheaded_hidden,
        #            initializer=tf.Variable(tf.constant(0.0, shape=[self.arch_params['output_dim'],1,1])))
        # multiheaded_output = h + self.weights["multiheaded2_biases"]
        # output1 = tf.reshape(multiheaded_output, [-1, self.arch_params['output_dim']])

        output1 = tf.matmul(hidden_relu, self.weights["decoder2_weights"]) + self.weights["decoder2_biases"]
        output = output1
        return output
forward_model.py 文件源码 项目:Buffe 作者: bentzinir 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def decode(self, input):
        # returns a decoder
        hidden = tf.matmul(input, self.weights["decoder1_weights"]) + self.weights["decoder1_biases"]
        hidden_relu = tf.nn.relu(hidden)

        # output is encoding_size x 1 x small_encoding_size
        # multiheaded_hidden = tf.matmul(input, self.weights["multiheaded1_weights"]) + self.weights["multiheaded1_biases"]
        # multiheaded_hidden = tf.reshape(multiheaded_hidden, [-1, self.arch_params['output_dim'], 1, self.arch_params['small_encoding_dim']])
        # multiheaded_hidden = tf.nn.relu(multiheaded_hidden)
        #
        # h = tf.scan(lambda a,x: tf.batch_matmul(x, self.weights["multiheaded2_weights"]), multiheaded_hidden,
        #            initializer=tf.Variable(tf.constant(0.0, shape=[self.arch_params['output_dim'],1,1])))
        # multiheaded_output = h + self.weights["multiheaded2_biases"]
        # output1 = tf.reshape(multiheaded_output, [-1, self.arch_params['output_dim']])

        output1 = tf.matmul(hidden_relu, self.weights["decoder2_weights"]) + self.weights["decoder2_biases"]
        output = output1
        return output
forward_model.py 文件源码 项目:Buffe 作者: bentzinir 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def decode(self, input):
        # returns a decoder
        hidden = tf.matmul(input, self.weights["decoder1_weights"]) + self.weights["decoder1_biases"]
        hidden_relu = tf.nn.relu(hidden)

        # output is encoding_size x 1 x small_encoding_size
        # multiheaded_hidden = tf.matmul(input, self.weights["multiheaded1_weights"]) + self.weights["multiheaded1_biases"]
        # multiheaded_hidden = tf.reshape(multiheaded_hidden, [-1, self.arch_params['output_dim'], 1, self.arch_params['small_encoding_dim']])
        # multiheaded_hidden = tf.nn.relu(multiheaded_hidden)
        #
        # h = tf.scan(lambda a,x: tf.batch_matmul(x, self.weights["multiheaded2_weights"]), multiheaded_hidden,
        #            initializer=tf.Variable(tf.constant(0.0, shape=[self.arch_params['output_dim'],1,1])))
        # multiheaded_output = h + self.weights["multiheaded2_biases"]
        # output1 = tf.reshape(multiheaded_output, [-1, self.arch_params['output_dim']])

        output1 = tf.matmul(hidden_relu, self.weights["decoder2_weights"]) + self.weights["decoder2_biases"]
        output = output1
        return output
forward_model.py 文件源码 项目:Buffe 作者: bentzinir 项目源码 文件源码 阅读 74 收藏 0 点赞 0 评论 0
def decode(self, input):
        # returns a decoder
        hidden = tf.matmul(input, self.weights["decoder1_weights"]) + self.weights["decoder1_biases"]
        hidden_relu = tf.nn.relu(hidden)

        # output is encoding_size x 1 x small_encoding_size
        # multiheaded_hidden = tf.matmul(input, self.weights["multiheaded1_weights"]) + self.weights["multiheaded1_biases"]
        # multiheaded_hidden = tf.reshape(multiheaded_hidden, [-1, self.arch_params['output_dim'], 1, self.arch_params['small_encoding_dim']])
        # multiheaded_hidden = tf.nn.relu(multiheaded_hidden)
        #
        # h = tf.scan(lambda a,x: tf.batch_matmul(x, self.weights["multiheaded2_weights"]), multiheaded_hidden,
        #            initializer=tf.Variable(tf.constant(0.0, shape=[self.arch_params['output_dim'],1,1])))
        # multiheaded_output = h + self.weights["multiheaded2_biases"]
        # output1 = tf.reshape(multiheaded_output, [-1, self.arch_params['output_dim']])

        output1 = tf.matmul(hidden_relu, self.weights["decoder2_weights"]) + self.weights["decoder2_biases"]
        output = output1
        return output
forward_model.py 文件源码 项目:Buffe 作者: bentzinir 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def decode(self, input):
        # returns a decoder
        hidden = tf.matmul(input, self.weights["decoder1_weights"]) + self.weights["decoder1_biases"]
        hidden_relu = tf.nn.relu(hidden)

        # output is encoding_size x 1 x small_encoding_size
        # multiheaded_hidden = tf.matmul(input, self.weights["multiheaded1_weights"]) + self.weights["multiheaded1_biases"]
        # multiheaded_hidden = tf.reshape(multiheaded_hidden, [-1, self.arch_params['output_dim'], 1, self.arch_params['small_encoding_dim']])
        # multiheaded_hidden = tf.nn.relu(multiheaded_hidden)
        #
        # h = tf.scan(lambda a,x: tf.batch_matmul(x, self.weights["multiheaded2_weights"]), multiheaded_hidden,
        #            initializer=tf.Variable(tf.constant(0.0, shape=[self.arch_params['output_dim'],1,1])))
        # multiheaded_output = h + self.weights["multiheaded2_biases"]
        # output1 = tf.reshape(multiheaded_output, [-1, self.arch_params['output_dim']])

        output1 = tf.matmul(hidden_relu, self.weights["decoder2_weights"]) + self.weights["decoder2_biases"]
        output = output1
        return output


问题


面经


文章

微信
公众号

扫码关注公众号