python类sin()的实例源码

kernels.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _J(self, theta):
        """
        Implements the order dependent family of functions defined in equations
        4 to 7 in the reference paper.
        """
        if self.order == 0:
            return np.pi - theta
        elif self.order == 1:
            return tf.sin(theta) + (np.pi - theta) * tf.cos(theta)
        elif self.order == 2:
            return 3. * tf.sin(theta) * tf.cos(theta) + \
                   (np.pi - theta) * (1. + 2. * tf.cos(theta) ** 2)
kernels.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def K(self, X, X2=None, presliced=False):
        if not presliced:
            X, X2 = self._slice(X, X2)
        if X2 is None:
            X2 = X

        # Introduce dummy dimension so we can use broadcasting
        f = tf.expand_dims(X, 1)  # now N x 1 x D
        f2 = tf.expand_dims(X2, 0)  # now 1 x M x D

        r = np.pi * (f - f2) / self.period
        r = tf.reduce_sum(tf.square(tf.sin(r) / self.lengthscales), 2)

        return self.variance * tf.exp(-0.5 * r)
core_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def setUp(self):
    super(CoreUnaryOpsTest, self).setUp()

    self.ops = [
        ('abs', operator.abs, tf.abs, core.abs_function),
        ('neg', operator.neg, tf.neg, core.neg),
        # TODO(shoyer): add unary + to core TensorFlow
        ('pos', None, None, None),
        ('sign', None, tf.sign, core.sign),
        ('reciprocal', None, tf.reciprocal, core.reciprocal),
        ('square', None, tf.square, core.square),
        ('round', None, tf.round, core.round_function),
        ('sqrt', None, tf.sqrt, core.sqrt),
        ('rsqrt', None, tf.rsqrt, core.rsqrt),
        ('log', None, tf.log, core.log),
        ('exp', None, tf.exp, core.exp),
        ('log', None, tf.log, core.log),
        ('ceil', None, tf.ceil, core.ceil),
        ('floor', None, tf.floor, core.floor),
        ('cos', None, tf.cos, core.cos),
        ('sin', None, tf.sin, core.sin),
        ('tan', None, tf.tan, core.tan),
        ('acos', None, tf.acos, core.acos),
        ('asin', None, tf.asin, core.asin),
        ('atan', None, tf.atan, core.atan),
        ('lgamma', None, tf.lgamma, core.lgamma),
        ('digamma', None, tf.digamma, core.digamma),
        ('erf', None, tf.erf, core.erf),
        ('erfc', None, tf.erfc, core.erfc),
        ('lgamma', None, tf.lgamma, core.lgamma),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    self.test_lt = core.LabeledTensor(
        tf.cast(self.original_lt, tf.float32) / total_size,
        self.original_lt.axes)
universal.py 文件源码 项目:blog 作者: metaflow-ai 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def func_to_approx(x):
    return tf.sin(x)
tensorflow_backend.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sin(x):
    '''Computes sin of x element-wise.
    '''
    return tf.sin(x)
complex_util.py 文件源码 项目:tensorflow_with_latest_papers 作者: NickShahML 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_unit_variable_c( name, scope, shape ):
    theta = tf.get_variable(name, shape=shape, initializer = tf.random_uniform_initializer(-pi,pi) )
    return tf.complex( tf.cos(theta), tf.sin(theta) )
ops.py 文件源码 项目:streetview 作者: ydnaandy123 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def sin_and_cos(x, name="ignored"):
    return tf.concat(len(x.get_shape()) - 1, [tf.sin(x), tf.cos(x)])
relative_trafo.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_rot_mat_x_hom(angle):
    """ Returns a 3D rotation matrix in homogeneous coords.  """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([one_vec, zero_vec, zero_vec, zero_vec,
                                          zero_vec, tf.cos(angle), -tf.sin(angle), zero_vec,
                                          zero_vec, tf.sin(angle), tf.cos(angle), zero_vec,
                                          zero_vec, zero_vec, zero_vec, one_vec])
    return trafo_matrix
relative_trafo.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_rot_mat_y_hom(angle):
    """ Returns a 3D rotation matrix in homogeneous coords.  """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), zero_vec, tf.sin(angle), zero_vec,
                                          zero_vec, one_vec, zero_vec, zero_vec,
                                          -tf.sin(angle), zero_vec, tf.cos(angle), zero_vec,
                                          zero_vec, zero_vec, zero_vec, one_vec])
    return trafo_matrix
relative_trafo.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _get_rot_mat_z_hom(angle):
    """ Returns a 3D rotation matrix in homogeneous coords. """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), -tf.sin(angle), zero_vec, zero_vec,
                                          tf.sin(angle), tf.cos(angle), zero_vec, zero_vec,
                                          zero_vec, zero_vec, one_vec, zero_vec,
                                          zero_vec, zero_vec, zero_vec, one_vec])
    return trafo_matrix
canonical_trafo.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_rot_mat_y(angle):
    """ Returns a 3D rotation matrix. """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), zero_vec, -tf.sin(angle),
                                          zero_vec, one_vec, zero_vec,
                                          tf.sin(angle), zero_vec, tf.cos(angle)])
    return trafo_matrix
canonical_trafo.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _get_rot_mat_z(angle):
    """ Returns a 3D rotation matrix. """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), tf.sin(angle), zero_vec,
                                          -tf.sin(angle), tf.cos(angle), zero_vec,
                                          zero_vec, zero_vec, one_vec])
    return trafo_matrix
buildRotations.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def buildRotations(n, rand_or_identity,num_rots=None):
    print("num_rots: %d" %num_rots)
    num_rots = num_rots or (n-1)
    n_prime = int(n*(n-1)//2*num_rots/(n-1))
    outputs = []

    with vs.variable_scope("Build_Rotations"):

        (indices, values_idxs) = rotationPreprocess(n, num_rots)
        if rand_or_identity:
            print("Initialization: Random")
            thetas = vs.get_variable(initializer=tf.random_uniform([n_prime, 1], 0, 2*math.pi),
                    name="Thetas_RandInit", dtype=tf.float32)
        else:
            print("Initialization: Identity")
            thetas = vs.get_variable(initializer=tf.zeros([n_prime, 1]),
                    name="Thetas_OnesInit", dtype=tf.float32)
        cos = tf.cos(thetas)
        sin = tf.sin(thetas)
        nsin = tf.neg(sin)

        thetas_concat = tf.concat(0, [cos,sin,nsin])

        gathered_values = tf.squeeze(tf.gather(thetas_concat, values_idxs))
        shape = tf.constant([n, n], dtype=tf.int64)

        splt_values = tf.split(0, num_rots, gathered_values)
        splt_indices = tf.split(0, num_rots, indices)

        shape = tf.constant([n,n], dtype=tf.int64)
        for i in range(num_rots):
            curr_indices = splt_indices[i]
            curr_values = splt_values[i]
            sparse_rot = tf.SparseTensor(indices=curr_indices, values=curr_values, shape=shape)
            outputs.append(sparse_rot)
    print("buildRotations output length: %d" % len(outputs))
    return outputs
rotationTransform.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def rotationTransform(X, n, scope, num_rots=None):
    num_rots = num_rots or (n-1)
    n_prime = int(n*(n-1)//2*num_rots/(n-1))
    outputs = []

    with vs.variable_scope(scope or "RotationTransform"):

        for i, (name, x) in enumerate(X):
            (indices, values_idxs) = rotationPreprocess(n, num_rots)
            thetas = vs.get_variable(initializer=tf.random_uniform([n_prime, 1], 0, 2*math.pi),
                    name="Thetas"+str(i)+name, dtype=tf.float32)

            cos = tf.cos(thetas)
            sin = tf.sin(thetas)
            nsin = tf.neg(sin)

            thetas_concat = tf.concat(0, [cos,sin,nsin])

            gathered_values = tf.squeeze(tf.gather(thetas_concat, values_idxs))
            shape = tf.constant([n, n], dtype=tf.int64)

            splt_values = tf.split(0, num_rots, gathered_values)
            splt_indices = tf.split(0, num_rots, indices)

            shape = tf.constant([n,n], dtype=tf.int64)
            for i in range(num_rots):
                curr_indices = splt_indices[i]
                curr_values = splt_values[i]
                sparse_rot = tf.SparseTensor(indices=curr_indices, values=curr_values, shape=shape)
                x = tf.sparse_tensor_dense_matmul(sparse_rot, x)
            outputs.append(x)
    return outputs
spherical.py 文件源码 项目:monodepth360 作者: srijanparmeshwar 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def lat_long_to_xyz(S, T):
    x = tf.cos(T) * tf.sin(S)
    y = tf.sin(T)
    z = tf.cos(T) * tf.cos(S)
    return x, y, z
spherical.py 文件源码 项目:monodepth360 作者: srijanparmeshwar 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def backproject(S, T, depth):
    # Convert to Cartesian for modified depth input.
    # depth = sqrt(x^2 + z^2).
    x = depth * tf.sin(S)
    y = depth * tf.tan(T)
    z = depth * tf.cos(S)
    return x, y, z
attention.py 文件源码 项目:THUMT 作者: thumt 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def add_timing_signal(x, min_timescale=1.0, max_timescale=1.0e4, name=None):
    """
    This function adds a bunch of sinusoids of different frequencies to a
    Tensor. See paper: Attention is all you need

    :param x: A tensor with shape [batch, length, channels]
    :param min_timescale: A floating point number
    :param max_timescale: A floating point number
    :param name: An optional string

    :returns: a Tensor the same shape as x.
    """

    with tf.name_scope(name, default_name="add_timing_signal", values=[x]):
        length = tf.shape(x)[1]
        channels = tf.shape(x)[2]
        position = tf.to_float(tf.range(length))
        num_timescales = channels // 2

        log_timescale_increment = (
            math.log(float(max_timescale) / float(min_timescale)) /
            (tf.to_float(num_timescales) - 1)
        )
        inv_timescales = min_timescale * tf.exp(
            tf.to_float(tf.range(num_timescales)) * -log_timescale_increment
        )

        scaled_time = (tf.expand_dims(position, 1) *
                       tf.expand_dims(inv_timescales, 0))
        signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
        signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
        signal = tf.reshape(signal, [1, length, channels])

        return x + signal
audio_demo.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def sine_wave(frequency):
  """Emit a sine wave at the given frequency."""
  xs = tf.reshape(tf.range(_samples(), dtype=tf.float32), [1, _samples(), 1])
  ts = xs / FLAGS.sample_rate
  return tf.sin(2 * math.pi * frequency * ts)
audio_demo.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def bisine_wahwah_wave(frequency):
  """Emit two sine waves with balance oscillating left and right."""
  #
  # This is clearly intended to build on the bisine wave defined above,
  # so we can start by generating that.
  waves_a = bisine_wave(frequency)
  #
  # Then, by reversing axis 2, we swap the stereo channels. By mixing
  # this with `waves_a`, we'll be able to create the desired effect.
  waves_b = tf.reverse(waves_a, axis=[2])
  #
  # Let's have the balance oscillate from left to right four times.
  iterations = 4
  #
  # Now, we compute the balance for each sample: `ts` has values
  # in [0, 1] that indicate how much we should use `waves_a`.
  xs = tf.reshape(tf.range(_samples(), dtype=tf.float32), [1, _samples(), 1])
  thetas = xs / _samples() * iterations
  ts = (tf.sin(math.pi * 2 * thetas) + 1) / 2
  #
  # Finally, we can mix the two together, and we're done.
  wave = ts * waves_a + (1.0 - ts) * waves_b
  #
  # Alternately, we can make the effect more pronounced by exaggerating
  # the sample data. Let's emit both variations.
  exaggerated_wave = wave ** 3.0
  return tf.concat([wave, exaggerated_wave], axis=0)
tensorflow_backend.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sin(x):
    """Computes sin of x element-wise.

    # Returns
        A tensor.
    """
    return tf.sin(x)


问题


面经


文章

微信
公众号

扫码关注公众号