python类WholeFileReader()的实例源码

utils.py 文件源码 项目:fast-neural-style 作者: coder-james 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_image(filepath, height, width, preprocess_fn, queue=None):
    png = filepath.lower().endswith('png')
    if queue is None:
      img_bytes = tf.read_file(filepath)
    else:
      reader = tf.WholeFileReader()
      _, img_bytes = reader.read(queue)

    image = tf.image.decode_png(img_bytes, channels=3) if png else tf.image.decode_jpeg(img_bytes, channels=3)
    return preprocess_fn(image, height, width)
embed.py 文件源码 项目:ml_gans 作者: imironhead 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def load_target_image():
    """
    """
    file_names = tf.train.string_input_producer([FLAGS.target_image_path])

    _, image = tf.WholeFileReader().read(file_names)

    # Decode byte data, no gif please.
    # NOTE: tf.image.decode_image can decode both jpeg and png. However, the
    #       shape (height and width) is unknown.
    image = tf.image.decode_png(image, channels=3)
    image = tf.cast(image, tf.float32)
    image = tf.image.resize_images(image, [FLAGS.image_size, FLAGS.image_size])
    image = tf.reshape(image, [1, FLAGS.image_size, FLAGS.image_size, 3])
    image = image / 127.5 - 1.0

    with tf.Session() as session:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        image = session.run(image)

        coord.request_stop()
        coord.join(threads)

    return tf.constant(image, name='target_image')
train.py 文件源码 项目:ml_gans 作者: imironhead 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def build_dataset_reader():
    """
    """
    paths_png_wildcards = os.path.join(FLAGS.portraits_dir_path, '*.png')

    paths_png = glob.glob(paths_png_wildcards)

    file_name_queue = tf.train.string_input_producer(paths_png)

    reader = tf.WholeFileReader()

    reader_key, reader_val = reader.read(file_name_queue)

    image = tf.image.decode_png(reader_val, channels=3, dtype=tf.uint8)

    # assume the size of input images are either 128x128x3 or 64x64x3.

    if FLAGS.crop_image:
        image = tf.image.crop_to_bounding_box(
            image,
            FLAGS.crop_image_offset_y,
            FLAGS.crop_image_offset_x,
            FLAGS.crop_image_size_m,
            FLAGS.crop_image_size_m)

        image = tf.random_crop(
            image, size=[FLAGS.crop_image_size_n, FLAGS.crop_image_size_n, 3])

    image = tf.image.resize_images(image, [FLAGS.image_size, FLAGS.image_size])

    image = tf.image.random_flip_left_right(image)

    image = tf.cast(image, dtype=tf.float32) / 127.5 - 1.0

    return tf.train.batch(
        tensors=[image],
        batch_size=FLAGS.batch_size,
        capacity=FLAGS.batch_size)
feed_input.py 文件源码 项目:SkyNet 作者: cs60050 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def readfile(filename):
    try:
        reader = tf.WholeFileReader()
        key,value = reader.read(filename)
        image = tf.image.decode_jpeg(value, channels=3)
        image = tf.image.resize_images(image, 224, 224)
        float_image = tf.div(tf.cast(image,tf.float32), 255)
        return float_image
    except:
        print -1
        return readfile(filename)
tfcycletest.py 文件源码 项目:tensorflow-cyclegan 作者: rickbarraza 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def input_pipeline(filenames, batch_size, num_epochs=None, image_size=142, crop_size=256):
    with tf.device('/cpu:0'):
        filenames = tf.train.match_filenames_once(filenames)
        filename_queue = tf.train.string_input_producer(filenames, num_epochs=num_epochs, shuffle=True)
        reader = tf.WholeFileReader()
        filename, value = reader.read(filename_queue)

        image = tf.image.decode_jpeg(value, channels=3)

        processed = tf.image.resize_images(
            image,
            [image_size, image_size],
            tf.image.ResizeMethod.BILINEAR)

        processed = tf.image.random_flip_left_right(processed)
        processed = tf.random_crop(processed, [crop_size, crop_size, 3])
        # CHANGE TO 'CHW' DATA_FORMAT FOR FASTER GPU PROCESSING
        processed = tf.transpose(processed, [2, 0, 1])
        processed = (tf.cast(processed, tf.float32) - 128.0) / 128.0

        images = tf.train.batch(
            [processed],
            batch_size=batch_size,
            num_threads=NUM_THREADS,
            capacity=batch_size * 5)

    return images
tfcycle.py 文件源码 项目:tensorflow-cyclegan 作者: rickbarraza 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def input_pipeline(filenames, batch_size, num_epochs=None, image_size=142, crop_size=256):
    with tf.device('/cpu:0'):
        filenames = tf.train.match_filenames_once(filenames)
        filename_queue = tf.train.string_input_producer(filenames, num_epochs=num_epochs, shuffle=True)
        reader = tf.WholeFileReader()
        filename, value = reader.read(filename_queue)

        image = tf.image.decode_jpeg(value, channels=3)

        processed = tf.image.resize_images(
            image,
            [image_size, image_size],
            tf.image.ResizeMethod.BILINEAR )

        processed = tf.image.random_flip_left_right(processed)
        processed = tf.random_crop(processed, [crop_size, crop_size, 3] )
        # CHANGE TO 'CHW' DATA_FORMAT FOR FASTER GPU PROCESSING
        processed = tf.transpose(processed, [2, 0, 1])
        processed = (tf.cast(processed, tf.float32) - 128.0) / 128.0

        images = tf.train.batch(
            [processed],
            batch_size = batch_size,
            num_threads = NUM_THREADS,
            capacity=batch_size * 5)

    return images
utils.py 文件源码 项目:DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow 作者: LynnHo 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def disk_image_batch(image_paths, batch_size, shape, preprocess_fn=None, shuffle=True, num_threads=16,
                     min_after_dequeue=100, allow_smaller_final_batch=False, scope=None):
    """
    This function is suitable for bmp, jpg, png and gif files

    image_paths: string list or 1-D tensor, each of which is an iamge path
    preprocess_fn: single image preprocessing function
    """

    with tf.name_scope(scope, 'disk_image_batch'):
        data_num = len(image_paths)

        # dequeue a single image path and read the image bytes; enqueue the whole file list
        _, img = tf.WholeFileReader().read(tf.train.string_input_producer(image_paths, shuffle=shuffle, capacity=data_num))
        img = tf.image.decode_image(img)

        # preprocessing
        img.set_shape(shape)
        if preprocess_fn is not None:
            img = preprocess_fn(img)

        # batch datas
        if shuffle:
            capacity = min_after_dequeue + (num_threads + 1) * batch_size
            img_batch = tf.train.shuffle_batch([img],
                                               batch_size=batch_size,
                                               capacity=capacity,
                                               min_after_dequeue=min_after_dequeue,
                                               num_threads=num_threads,
                                               allow_smaller_final_batch=allow_smaller_final_batch)
        else:
            img_batch = tf.train.batch([img],
                                       batch_size=batch_size,
                                       allow_smaller_final_batch=allow_smaller_final_batch)

        return img_batch, data_num
dataset_file.py 文件源码 项目:tensorflow-litterbox 作者: rwightman 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def reader(self):
        """Return a reader for a single entry from the data set.

        See io_ops.py for details of Reader class.

        Returns:
          Reader object that reads the data set.
        """
        return tf.WholeFileReader()
dataset.py 文件源码 项目:Style-Transfer-In-Tensorflow 作者: JiangQH 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _file_reader(self, filename_queue):
        # read file from queue
        reader = tf.WholeFileReader()
        _, img_bytes = reader.read(filename_queue)
        # decode it
        image_data = tf.image.decode_jpeg(img_bytes, channels=3)
        # preprocess it and return
        return preprocess(image_data, self.config)
dataset.py 文件源码 项目:cycle-gan-tf 作者: hiwonjoon 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_image_batch(pattern,batch_size,image_size=143,crop_size=128,train=True) :
    if (train) :
        random_flip = lambda x : tf.image.random_flip_left_right(x)
        crop = lambda x : tf.random_crop(x,[crop_size,crop_size,3])
        queue = lambda : tf.train.string_input_producer(tf.train.match_filenames_once(pattern),
                                                         num_epochs=None, shuffle=True)
        batch = lambda f,x: tf.train.shuffle_batch([f,x],
                                                    batch_size=batch_size,
                                                    num_threads=NUM_THREADS,
                                                    capacity=batch_size*5,
                                                    min_after_dequeue=batch_size*3)
    else :
        random_flip = lambda x : tf.identity(x)
        crop = lambda x : tf.image.resize_image_with_crop_or_pad(image,crop_size,crop_size)
        queue = lambda : tf.train.string_input_producer(tf.train.match_filenames_once(pattern),
                                                         num_epochs=1, shuffle=False)
        batch = lambda f,x: tf.train.batch([f,x],
                                            batch_size=batch_size,
                                            num_threads=NUM_THREADS,
                                            allow_smaller_final_batch=False)

    def _preprocess(image) :
        image = random_flip(image)
        image = crop(image)
        image = tf.transpose(image,[2,0,1]) #change to CHW format
        image = (tf.cast(image,tf.float32) - 128.0)/128.0 #push in to [-1 to 1] area.
        return image

    with tf.device('/cpu:0'):
        filename_queue = queue()

        image_reader = tf.WholeFileReader()
        filename, image_file = image_reader.read(filename_queue)
        image = tf.image.decode_jpeg(image_file,3)
        resized = tf.image.resize_images(image,[image_size,image_size],tf.image.ResizeMethod.BILINEAR)
        preprocessed = _preprocess(resized)

        filenames, images = batch(filename,preprocessed)

    return filenames, images
zap50k.py 文件源码 项目:gan-image-similarity 作者: marcbelmont 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def read_image(filename_queue, shuffle):
    image_reader = tf.WholeFileReader()
    path, image_file = image_reader.read(filename_queue)

    # Preprocessing
    image = tf.image.decode_jpeg(image_file, 3)
    if shuffle:
        # image = tf.image.random_contrast(image, lower=0.8, upper=1.2)
        if image.get_shape()[0] > IMAGE_SIZE['cropped'][0] and image.get_shape()[1] > IMAGE_SIZE['cropped'][1]:
            image = tf.random_crop(image, IMAGE_SIZE['cropped'])
        # image = tf.image.per_image_whitening(image)
    image = tf.image.resize_images(image, IMAGE_SIZE['resized'])
    image = image * (1. / 255) - 0.5
    return [image, path]
image_resizing.py 文件源码 项目:Handwritten_recognition_tensorflow 作者: sanjanaramprasad 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def read_image(filename_queue):
    reader = tf.WholeFileReader()
    key,value = reader.read(filename_queue)
    image = tf.image.decode_png(value)
    return image
style_transfer.py 文件源码 项目:ml_styles 作者: imironhead 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def load_image(path):
    """
    """
    file_names = tf.train.string_input_producer([path])

    _, image = tf.WholeFileReader().read(file_names)

    # Decode byte data, no gif please.
    # NOTE: tf.image.decode_image can decode both jpeg and png. However, the
    #       shape (height and width) is unknown.
    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.cast(image, tf.float32)
    shape = tf.shape(image)[:2]
    image = tf.image.resize_images(image, [256, 256])
    image = tf.reshape(image, [1, 256, 256, 3])

    # for VggNet, subtract the mean color of it's training data.
    # image = tf.subtract(image, VggNet.mean_color_rgb())

    image = tf.cast(image, dtype=tf.float32) / 127.5 - 1.0

    # R/G/B to B/G/R
    image = tf.reverse(image, [3])

    padding = [FLAGS.padding, FLAGS.padding]

    image = tf.pad(
        tensor=image,
        paddings=[[0, 0], padding, padding, [0, 0]],
        mode='symmetric')

    with tf.Session() as session:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        image, shape = session.run([image, shape])

        coord.request_stop()
        coord.join(threads)

        return image, shape
transfer.py 文件源码 项目:ml_styles 作者: imironhead 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def load_image(path):
    """
    """
    file_names = tf.train.string_input_producer([path])

    _, image = tf.WholeFileReader().read(file_names)

    # Decode byte data, no gif please.
    # NOTE: tf.image.decode_image can decode both jpeg and png. However, the
    #       shape (height and width) is unknown.
    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.cast(image, tf.float32)
    shape = tf.shape(image)[:2]
    image = tf.image.resize_images(image, [224, 224])
    image = tf.reshape(image, [1, 224, 224, 3])

    # for VggNet, subtract the mean color of it's training data.
    image = tf.subtract(image, VggNet.mean_color_rgb())

    # R/G/B to B/G/R
    image = tf.reverse(image, [3])

    with tf.Session() as session:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        image, shape = session.run([image, shape])

        coord.request_stop()
        coord.join(threads)

        return image, shape
srcnn.py 文件源码 项目:tf_super_resolution 作者: burness 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def process_data(sess, filenames):
    """
    This script gen the input images(downsample) and labels(origin images)
    """
    images_size = FLAGS.input_image_size
    reader = tf.WholeFileReader()
    filename_queue = tf.train.string_input_producer(filenames)
    _, value = reader.read(filename_queue)
    channels = FLAGS.image_channels
    image = tf.image.decode_jpeg(
        value, channels=channels, name="dataset_image")
    # add data augmentation here
    image.set_shape([None, None, channels])
    image = tf.reshape(image, [1, images_size, images_size, 3])
    image = tf.cast(image, tf.float32) / 255.0
    K = FLAGS.scale
    downsampled = tf.image.resize_area(
        image, [images_size // K, images_size // K])
    upsampled = tf.image.resize_area(downsampled, [images_size, images_size])

    feature = tf.reshape(upsampled, [images_size, images_size, 3])
    label = tf.reshape(image, [images_size, images_size, 3])
    features, labels = tf.train.shuffle_batch(
        [feature, label], batch_size=FLAGS.batch_size, num_threads=4, capacity=5000, min_after_dequeue=1000, name='labels_and_features')
    tf.train.start_queue_runners(sess=sess)
    print 'tag31', features.eval(), labels.get_shape()
    return features, labels
train_multigpu.py 文件源码 项目:DAVIS-2016-Chanllege-Solution 作者: tangyuhao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def single_JPEGimage_reader(filename_queue):
    image_reader = tf.WholeFileReader()
    _, image_file = image_reader.read(filename_queue)
    image = (tf.to_float(tf.image.decode_jpeg(image_file, channels=3)))
    image = tf.image.resize_images(image,[HEIGHT,WIDTH],method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    return image
train_multigpu.py 文件源码 项目:DAVIS-2016-Chanllege-Solution 作者: tangyuhao 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def single_PNGimage_reader(filename_queue):
    image_reader = tf.WholeFileReader()
    _, image_file = image_reader.read(filename_queue)
    image = tf.to_float(tf.image.decode_png(image_file, channels=1))
    image = tf.image.resize_images(image,[HEIGHT,WIDTH],method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    # pixel distribution ground truth 
    return image
train_backup.py 文件源码 项目:DAVIS-2016-Chanllege-Solution 作者: tangyuhao 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def single_JPEGimage_reader(filename_queue):
    image_reader = tf.WholeFileReader()
    _, image_file = image_reader.read(filename_queue)
    image = (tf.to_float(tf.image.decode_jpeg(image_file, channels=3)))
    image = tf.image.resize_images(image,[HEIGHT,WIDTH],method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    return image
train_backup.py 文件源码 项目:DAVIS-2016-Chanllege-Solution 作者: tangyuhao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def single_PNGimage_reader(filename_queue):
    image_reader = tf.WholeFileReader()
    _, image_file = image_reader.read(filename_queue)
    image = tf.to_float(tf.image.decode_png(image_file, channels=1))
    image = tf.image.resize_images(image,[HEIGHT,WIDTH],method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    # pixel distribution ground truth 
    return image
train.py 文件源码 项目:DAVIS-2016-Chanllege-Solution 作者: tangyuhao 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def single_JPEGimage_reader(filename_queue):
    image_reader = tf.WholeFileReader()
    _, image_file = image_reader.read(filename_queue)
    image = (tf.to_float(tf.image.decode_jpeg(image_file, channels=3)))
    image = tf.image.resize_images(image,[HEIGHT,WIDTH],method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    return image


问题


面经


文章

微信
公众号

扫码关注公众号