python类arg_max()的实例源码

dnn.py 文件源码 项目:tfdnn-kaldi 作者: dreaming-dog 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def buildEvalGraph(self):
        with tf.variable_scope('eval_variables', reuse=False):
            self.logits = tf.nn.softmax(self.layers[-1].activations, name='logits')
            self.correct_predication = tf.equal(tf.arg_max(self.logits, 1), tf.arg_max(self.output, 1))
            self.accuracy = tf.reduce_mean(tf.cast(self.correct_predication, tf.float32))
tensorboard_test.py 文件源码 项目:docker_slides 作者: hyt-sasaki 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def accuracy(labels_placeholder, inference):
    with tf.name_scope('test'):
        correct_prediction = tf.equal(
            tf.arg_max(inference, 1), tf.argmax(labels_placeholder, 1)
        )
        acc = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
        tf.scalar_summary('accuracy', acc)
        return acc
tf_model.py 文件源码 项目:TF-Net 作者: Jorba123 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def accuracy(logits, targets_pl, one_hot=False):
    targets = tf.to_int64(targets_pl)

    if one_hot:
        # compare the indices of the outputs. For a correct prediction they should be the same
        correct_prediction = tf.equal(tf.arg_max(logits, 1), tf.arg_max(targets, 1), name='accuracy_equals_oh')
    else:
        # compare the indices of the outputs with the correct label which is a number here.
        correct_prediction = tf.equal(tf.arg_max(logits, 1), targets, name='accuracy_equals')
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float32'), name='accuracy_mean')
    tf.summary.scalar('accuracy_mean', accuracy)
    return accuracy
multilayer_perceptron.py 文件源码 项目:Deep_Learning_In_Action 作者: SunnyMarkLiu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def init_train_test_op(self):
        # loss function
        self.loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y,
                                                                                    logits=self.read_out_logits))
        # training op
        self.training_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss_function)
        self.predict_op = tf.arg_max(self.read_out_logits, 1)
        # predict
        predict_matches = tf.equal(tf.arg_max(self.y, dimension=1),
                                   tf.arg_max(self.read_out_logits, 1))
        # accuracy metric
        self.accuracy = tf.reduce_mean(tf.cast(predict_matches, tf.float32))
alex_net.py 文件源码 项目:Deep_Learning_In_Action 作者: SunnyMarkLiu 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def init_train_test_op(self):
        # loss function
        self.loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y,
                                                                                    logits=self.read_out_logits))
        # training op
        self.training_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss_function)
        self.predict_op = tf.arg_max(self.read_out_logits, 1)
        # predict
        predict_matches = tf.equal(tf.arg_max(self.y, dimension=1),
                                   tf.arg_max(self.read_out_logits, 1))
        # accuracy metric
        self.accuracy = tf.reduce_mean(tf.cast(predict_matches, tf.float32))
network_in_network.py 文件源码 项目:Deep_Learning_In_Action 作者: SunnyMarkLiu 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def init_train_test_op(self):
        # some loss functions and all -> total loss
        self.loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y,
                                                                                    logits=self.read_out_logits))
        # training op
        self.training_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss_function)
        self.predict_op = tf.arg_max(self.read_out_logits, 1)
        # predict
        predict_matches = tf.equal(tf.arg_max(self.y, dimension=1),
                                   tf.arg_max(self.read_out_logits, 1))
        # accuracy metric
        self.accuracy = tf.reduce_mean(tf.cast(predict_matches, tf.float32))
inception_v1.py 文件源码 项目:Deep_Learning_In_Action 作者: SunnyMarkLiu 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def init_train_test_op(self):
        # some loss functions and all -> total loss
        self.loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y,
                                                                                    logits=self.read_out_logits))
        # training op
        self.training_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss_function)
        self.predict_op = tf.arg_max(self.read_out_logits, 1)
        # predict
        predict_matches = tf.equal(tf.arg_max(self.y, dimension=1),
                                   tf.arg_max(self.read_out_logits, 1))
        # accuracy metric
        self.accuracy = tf.reduce_mean(tf.cast(predict_matches, tf.float32))
vgg_net.py 文件源码 项目:Deep_Learning_In_Action 作者: SunnyMarkLiu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def init_train_test_op(self):
        # loss function
        self.loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y,
                                                                                    logits=self.read_out_logits))
        # training op
        self.training_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss_function)
        self.predict_op = tf.arg_max(self.read_out_logits, 1)
        # predict
        predict_matches = tf.equal(tf.arg_max(self.y, dimension=1),
                                   tf.arg_max(self.read_out_logits, 1))
        # accuracy metric
        self.accuracy = tf.reduce_mean(tf.cast(predict_matches, tf.float32))
ram.py 文件源码 项目:ram_modified 作者: jtkim-kaist 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def calc_reward(outputs):

    # consider the action at the last time step
    outputs = outputs[-1] # look at ONLY THE END of the sequence
    outputs = tf.reshape(outputs, (batch_size, cell_out_size))

    # get the baseline
    b = tf.pack(baselines)
    b = tf.concat(2, [b, b])
    b = tf.reshape(b, (batch_size, (nGlimpses) * 2))
    no_grad_b = tf.stop_gradient(b)

    # get the action(classification)
    p_y = tf.nn.softmax(tf.matmul(outputs, Wa_h_a) + Ba_h_a)
    max_p_y = tf.arg_max(p_y, 1)
    correct_y = tf.cast(labels_placeholder, tf.int64)

    # reward for all examples in the batch
    R = tf.cast(tf.equal(max_p_y, correct_y), tf.float32)
    reward = tf.reduce_mean(R) # mean reward
    R = tf.reshape(R, (batch_size, 1))
    R = tf.tile(R, [1, (nGlimpses)*2])

    # get the location
    p_loc = gaussian_pdf(mean_locs, sampled_locs)
    p_loc = tf.tanh(p_loc)
    p_loc_orig = p_loc
    p_loc = tf.reshape(p_loc, (batch_size, (nGlimpses) * 2))

    # define the cost function
    J = tf.concat(1, [tf.log(p_y + SMALL_NUM) * (onehot_labels_placeholder), tf.log(p_loc + SMALL_NUM) * (R - no_grad_b)])
    J = tf.reduce_sum(J, 1)
    J = J - tf.reduce_sum(tf.square(R - b), 1)
    J = tf.reduce_mean(J, 0)
    cost = -J

    # define the optimizer
    optimizer = tf.train.MomentumOptimizer(lr, momentumValue)
    train_op = optimizer.minimize(cost, global_step)

    return cost, reward, max_p_y, correct_y, train_op, b, tf.reduce_mean(b), tf.reduce_mean(R - b), lr
tools.py 文件源码 项目:My-TensorFlow-tutorials 作者: kevin28520 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def num_correct_prediction(logits, labels):
  """Evaluate the quality of the logits at predicting the label.
  Return:
      the number of correct predictions
  """
  correct = tf.equal(tf.arg_max(logits, 1), tf.arg_max(labels, 1))
  correct = tf.cast(correct, tf.int32)
  n_correct = tf.reduce_sum(correct)
  return n_correct



#%%
nsr_model.py 文件源码 项目:num-seq-recognizer 作者: gmlove 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _setup_net(self):
    with self.cnn_net.variable_scope([self.data_batches]) as variable_scope:
      end_points_collection = self.cnn_net.end_points_collection_name(variable_scope)
      net, _ = self.cnn_net.cnn_layers(self.data_batches, variable_scope, end_points_collection)
      net = slim.fully_connected(net, self.embedding_size, activation_fn=None, scope='fc0')
      net = rnn.rnn_layers(net, tf.arg_max(self.numbers_label_batches, dimension=2), self.embedding_size)
      net = tf.reshape(net, [-1, self.embedding_size])
      self.model_output = slim.fully_connected(net, 11, activation_fn=None, scope='fc4')
mobilenetdet.py 文件源码 项目:MobileNet 作者: Zehaos 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def batch_iou_fast(anchors, bboxes):
  """ Compute iou of two batch of boxes. Box format '[y_min, x_min, y_max, x_max]'.
  Args:
    anchors: know shape
    bboxes: dynamic shape
  Return:
    ious: 2-D with shape '[num_bboxes, num_anchors]'
    indices: [num_bboxes, 1]
  """
  num_anchors = anchors.get_shape().as_list()[0]
  tensor_num_bboxes = tf.shape(bboxes)[0]
  indices = tf.reshape(tf.range(tensor_num_bboxes), shape=[-1, 1])
  indices = tf.reshape(tf.stack([indices]*num_anchors, axis=1), shape=[-1, 1])
  bboxes_m = tf.gather_nd(bboxes, indices)

  anchors_m = tf.tile(anchors, [tensor_num_bboxes, 1])

  lr = tf.maximum(
    tf.minimum(bboxes_m[:, 3], anchors_m[:, 3]) -
    tf.maximum(bboxes_m[:, 1], anchors_m[:, 1]),
    0
  )
  tb = tf.maximum(
    tf.minimum(bboxes_m[:, 2], anchors_m[:, 2]) -
    tf.maximum(bboxes_m[:, 0], anchors_m[:, 0]),
    0
  )
  intersection = tf.multiply(tb, lr)
  union = tf.subtract(
    tf.multiply((bboxes_m[:, 3] - bboxes_m[:, 1]), (bboxes_m[:, 2] - bboxes_m[:, 0])) +
    tf.multiply((anchors_m[:, 3] - anchors_m[:, 1]), (anchors_m[:, 2] - anchors_m[:, 0])),
    intersection
  )
  ious = tf.div(intersection, union)

  ious = tf.reshape(ious, shape=[tensor_num_bboxes, num_anchors])

  indices = tf.arg_max(ious, dimension=1)

  return ious, indices
lstm.py 文件源码 项目:MovieComment2Rating 作者: yaokai1117 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, sent_length, class_num,
                 embedding_size, initial_embedding_dict,
                 l2_lambda, hidden_size):

        self.input_x = tf.placeholder(tf.int32, [None, sent_length], name="input_x")
        self.input_y = tf.placeholder(tf.float32, [None, class_num], name="input_y")
        self.dropout_keep_prob_1 = tf.placeholder(tf.float32, name="dropout_keep_prob_1")
        self.dropout_keep_prob_2 = tf.placeholder(tf.float32, name="dropout_keep_prob_2")

        l2_loss = tf.constant(0.0)

        with tf.name_scope("embedding"):
            self.embedding_dict = tf.Variable(initial_embedding_dict, name="Embedding", dtype=tf.float32)
            self.embedded_chars = tf.nn.embedding_lookup(self.embedding_dict, self.input_x)
            # unstack embedded input
            self.unstacked = tf.unstack(self.embedded_chars, sent_length, 1)

        with tf.name_scope("lstm"):
            # create a LSTM network
            lstm_cell = rnn.BasicLSTMCell(hidden_size)
            self.output, self.states = rnn.static_rnn(lstm_cell, self.unstacked, dtype=tf.float32)
            self.pooling = tf.reduce_mean(self.output, 0)

        with tf.name_scope("linear"):
            weights = tf.get_variable(
                "W",
                shape=[hidden_size, class_num],
                initializer=tf.contrib.layers.xavier_initializer())
            bias = tf.Variable(tf.constant(0.1, shape=[class_num]), name="b")
            l2_loss += tf.nn.l2_loss(weights)
            l2_loss += tf.nn.l2_loss(bias)
            self.linear_result = tf.nn.xw_plus_b(self.pooling, weights, bias, name="linear")
            self.predictions = tf.arg_max(self.linear_result, 1, name="predictions")

        with tf.name_scope("loss"):
            losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.linear_result, labels=self.input_y)
            self.loss = tf.reduce_mean(losses) + l2_lambda * l2_loss

        with tf.name_scope("accuracy"):
            correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
softmax.py 文件源码 项目:MovieComment2Rating 作者: yaokai1117 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, sent_length, class_num, embedding_size, l2_lambda):
        self.input_x = tf.placeholder(tf.float32, [None, sent_length, embedding_size], name="input_x")
        self.input_y = tf.placeholder(tf.float32, [None, class_num], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        l2_loss = tf.constant(0.0)

        with tf.name_scope("flat"):
            self.flatted = tf.reshape(self.input_x, [-1, sent_length * embedding_size])

        with tf.name_scope("linear"):
            weights = tf.get_variable(
                "W",
                shape=[sent_length * embedding_size, class_num],
                initializer=tf.contrib.layers.xavier_initializer())
            bias = tf.Variable(tf.constant(0.1, shape=[class_num]), name="b")
            l2_loss += tf.nn.l2_loss(weights)
            l2_loss += tf.nn.l2_loss(bias)
            self.linear_result = tf.nn.xw_plus_b(self.flatted, weights, bias, name="linear")
            self.predictions = tf.arg_max(self.linear_result, 1, name="predictions")

        with tf.name_scope("loss"):
            losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.linear_result, labels=self.input_y)
            self.loss = tf.reduce_mean(losses) + l2_lambda * l2_loss

        with tf.name_scope("accuracy"):
            correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
layers.py 文件源码 项目:DBQA 作者: nanfeng1101 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, input, n_in, n_out):
        self.W = tf.Variable(tf.zeros(shape=(n_in, n_out)), name="LR_W")
        self.b = tf.Variable(tf.zeros(shape=(n_out,)), name="LR_b")
        self.linear = tf.add(tf.matmul(input, self.W), self.b)
        self.p_y_given_x = tf.nn.softmax(tf.add(tf.matmul(input, self.W), self.b))
        self.y_pred = tf.arg_max(self.p_y_given_x, 1)
layers.py 文件源码 项目:DBQA 作者: nanfeng1101 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def errors(self, y):
        return tf.reduce_mean(tf.cast(tf.not_equal(self.y_pred, tf.arg_max(y,1)), dtype=tf.float32))
tf_model.py 文件源码 项目:Defect-Prediction 作者: Jorba123 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def accuracy(logits, targets_pl, one_hot=False):
    targets = tf.to_int64(targets_pl)

    if one_hot:
        # compare the indices of the outputs. For a correct prediction they should be the same
        correct_prediction = tf.equal(tf.arg_max(logits, 1), tf.arg_max(targets, 1), name='accuracy_equals_oh')
    else:
        # compare the indices of the outputs with the correct label which is a number here.
        correct_prediction = tf.equal(tf.arg_max(logits, 1), targets, name='accuracy_equals')
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float32'), name='accuracy_mean')
    tf.summary.scalar('accuracy_mean', accuracy)
    return accuracy
tf_model.py 文件源码 项目:Defect-Prediction 作者: Jorba123 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def f1_score(logits, targets_pl, one_hot=False):
    targets = tf.to_int64(targets_pl)

    y_predicted = tf.arg_max(logits, 1)
    if one_hot:
        y_true = tf.arg_max(targets, 1)
    else:
        y_true = logits

    # get true positives (by multiplying the predicted and actual labels we will only get a 1 if both labels are 1)
    tp = tf.count_nonzero(y_predicted * y_true)

    # get true negatives (basically the same as tp only the inverse)
    tn = tf.count_nonzero((y_predicted - 1) * (y_true - 1)) 

    fp = tf.count_nonzero(y_predicted * (y_true - 1))
    fn = tf.count_nonzero((y_predicted - 1) * y_true)

    # Calculate accuracy, precision, recall and F1 score.
    accuracy = (tp + tn) / (tp + fp + fn + tn)
    precision = tp / (tp + fp)
    recall = tp / (tp + fn)
    f1_score = (2 * precision * recall) / (precision + recall)

    tf.summary.scalar('accuracy', accuracy)
    tf.summary.scalar('precision', precision)
    tf.summary.scalar('recall', recall)
    tf.summary.scalar('f1-score', f1_score)

    f1_score = tf.reduce_mean(tf.cast(f1_score, 'float32'), name='f1_score_reduce_mean')
    return f1_score
DenseLayer.py 文件源码 项目:DocumentClassification 作者: liu-nlper 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_pre_y(self):
        # TODO ???
        # pre_y = tf.reshape(tf.round(tf.sigmoid(self._output)), [-1])
        pre_y = tf.arg_max(input=self._output, dimension=1)
        return pre_y
mnist_cnn.py 文件源码 项目:ML 作者: JNU-Room 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_class(self, index):
        label = self.db.test.labels[index:index+1]
        return self.sess.run(tf.arg_max(label, 1))


问题


面经


文章

微信
公众号

扫码关注公众号