python类select()的实例源码

keras_extensions.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def switch(condition, then_tensor, else_tensor):
    """
    Keras' implementation of switch for tensorflow uses tf.switch which accepts only scalar conditions.
    It should use tf.select instead.
    """
    if K.backend() == 'tensorflow':
        import tensorflow as tf
        condition_shape = condition.get_shape()
        input_shape = then_tensor.get_shape()
        if condition_shape[-1] != input_shape[-1] and condition_shape[-1] == 1:
            # This means the last dim is an embedding dim. Keras does not mask this dimension. But tf wants
            # the condition and the then and else tensors to be the same shape.
            condition = K.dot(tf.cast(condition, tf.float32), tf.ones((1, input_shape[-1])))
        return tf.select(tf.cast(condition, dtype=tf.bool), then_tensor, else_tensor)
    else:
        import theano.tensor as T
        return T.switch(condition, then_tensor, else_tensor)
nn.py 文件源码 项目:weightnorm 作者: openai 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def sample_from_discretized_mix_logistic(l,nr_mix):
    ls = int_shape(l)
    xs = ls[:-1] + [3]
    # unpack parameters
    logit_probs = l[:, :, :, :nr_mix]
    l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix*3])
    # sample mixture indicator from softmax
    sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform(logit_probs.get_shape(), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32)
    sel = tf.reshape(sel, xs[:-1] + [1,nr_mix])
    # select logistic parameters
    means = tf.reduce_sum(l[:,:,:,:,:nr_mix]*sel,4)
    log_scales = tf.maximum(tf.reduce_sum(l[:,:,:,:,nr_mix:2*nr_mix]*sel,4), -7.)
    coeffs = tf.reduce_sum(tf.nn.tanh(l[:,:,:,:,2*nr_mix:3*nr_mix])*sel,4)
    # sample from logistic & clip to interval
    # we don't actually round to the nearest 8bit value when sampling
    u = tf.random_uniform(means.get_shape(), minval=1e-5, maxval=1. - 1e-5)
    x = means + tf.exp(log_scales)*(tf.log(u) - tf.log(1. - u))
    x0 = tf.minimum(tf.maximum(x[:,:,:,0], -1.), 1.)
    x1 = tf.minimum(tf.maximum(x[:,:,:,1] + coeffs[:,:,:,0]*x0, -1.), 1.)
    x2 = tf.minimum(tf.maximum(x[:,:,:,2] + coeffs[:,:,:,1]*x0 + coeffs[:,:,:,2]*x1, -1.), 1.)
    return tf.concat(3,[tf.reshape(x0,xs[:-1]+[1]), tf.reshape(x1,xs[:-1]+[1]), tf.reshape(x2,xs[:-1]+[1])])
utils.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def broadcast(tensor, target_tensor):
    """Broadcast a tensor to match the shape of a target tensor.

    Args:
        tensor (Tensor): tensor to be tiled
        target_tensor (Tensor): tensor whose shape is to be matched
    """
    rank = lambda t: t.get_shape().ndims
    assert rank(tensor) == rank(target_tensor)  # TODO: assert that tensors have no overlapping non-unity dimensions

    orig_shape = tf.shape(tensor)
    target_shape = tf.shape(target_tensor)

    # if dim == 1, set it to target_dim
    # else, set it to 1
    tiling_factor = tf.select(tf.equal(orig_shape, 1), target_shape, tf.ones([rank(tensor)], dtype=tf.int32))
    broadcasted = tf.tile(tensor, tiling_factor)

    # Add static shape information
    broadcasted.set_shape(target_tensor.get_shape())

    return broadcasted
seq_batch.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def change_pad_value(values, mask, pad_val):
    """Given a set of values and a pad mask, change the value of all pad entries.

    Args:
        values (Tensor): of shape [batch_size, seq_length, :, ..., :].
        mask (Tensor): binary float tensor of shape [batch_size, seq_length]
        pad_val (float): value to set all pad entries to

    Returns:
        Tensor: a new Tensor of same shape as values
    """
    # broadcast the mask to match shape of values
    mask = expand_dims_for_broadcast(mask, values)  # (batch_size, seq_length, 1, ..., 1)
    mask = broadcast(mask, values)
    mask = tf.cast(mask, tf.bool)  # cast to bool

    # broadcast val
    broadcast_val = pad_val * tf.ones(tf.shape(values))

    new_values = tf.select(mask, values, broadcast_val)
    return new_values
utils.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def broadcast(tensor, target_tensor):
    """Broadcast a tensor to match the shape of a target tensor.

    Args:
        tensor (Tensor): tensor to be tiled
        target_tensor (Tensor): tensor whose shape is to be matched
    """
    rank = lambda t: t.get_shape().ndims
    assert rank(tensor) == rank(target_tensor)  # TODO: assert that tensors have no overlapping non-unity dimensions

    orig_shape = tf.shape(tensor)
    target_shape = tf.shape(target_tensor)

    # if dim == 1, set it to target_dim
    # else, set it to 1
    tiling_factor = tf.select(tf.equal(orig_shape, 1), target_shape, tf.ones([rank(tensor)], dtype=tf.int32))
    broadcasted = tf.tile(tensor, tiling_factor)

    # Add static shape information
    broadcasted.set_shape(target_tensor.get_shape())

    return broadcasted
seq_batch.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def change_pad_value(values, mask, pad_val):
    """Given a set of values and a pad mask, change the value of all pad entries.

    Args:
        values (Tensor): of shape [batch_size, seq_length, :, ..., :].
        mask (Tensor): binary float tensor of shape [batch_size, seq_length]
        pad_val (float): value to set all pad entries to

    Returns:
        Tensor: a new Tensor of same shape as values
    """
    # broadcast the mask to match shape of values
    mask = expand_dims_for_broadcast(mask, values)  # (batch_size, seq_length, 1, ..., 1)
    mask = broadcast(mask, values)
    mask = tf.cast(mask, tf.bool)  # cast to bool

    # broadcast val
    broadcast_val = pad_val * tf.ones(tf.shape(values))

    new_values = tf.select(mask, values, broadcast_val)
    return new_values
temporal_softmax.py 文件源码 项目:image_captioning 作者: AgrawalAmey 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def backward(self):

        dx_flat = self.probs

        coords = tf.transpose(tf.pack([tf.range(self.N * self.T), self.y_flat]))
        binary_mask = tf.sparse_to_dense(coords, dx_flat.get_shape(), 1)
        # convert 1/0 to True/False
        binary_mask = tf.cast(binary_mask, tf.bool)
        decremented = dx_flat - 1
        # make new x out of old values or decresed, depending on mask 
        dx_flat = tf.select(binary_mask, decremented, dx_flat)
        dx_flat /= self.N
        dx_flat *= self.mask_flat[:, None]

        dx = tf.reshape(dx_flat, [self.N, self.T, self.V])

        return dx
temporal_softmax.py 文件源码 项目:image_captioning 作者: AgrawalAmey 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def backward(self):

        dx_flat = self.probs

        coords = tf.transpose(tf.pack([tf.range(self.N * self.T), self.y_flat]))
        binary_mask = tf.sparse_to_dense(coords, dx_flat.get_shape(), 1)
        # convert 1/0 to True/False
        binary_mask = tf.cast(binary_mask, tf.bool)
        decremented = dx_flat - 1
        # make new x out of old values or decresed, depending on mask 
        dx_flat = tf.select(binary_mask, decremented, dx_flat)
        dx_flat /= self.N
        dx_flat *= self.mask_flat[:, None]

        dx = tf.reshape(dx_flat, [self.N, self.T, self.V])

        return dx
tensorflow_grad_inverter.py 文件源码 项目:DDPG 作者: MOCR 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, action_bounds):
        self.graph = tf.Graph()
        with self.graph.as_default():
            self.sess = tf.Session()       

            self.action_size = len(action_bounds[0])

            self.action_input = tf.placeholder(tf.float32, [None, self.action_size])
            self.pmax = tf.constant(action_bounds[0], dtype = tf.float32)
            self.pmin = tf.constant(action_bounds[1], dtype = tf.float32)
            self.prange = tf.constant([x - y for x, y in zip(action_bounds[0],action_bounds[1])], dtype = tf.float32)
            self.pdiff_max = tf.div(-self.action_input+self.pmax, self.prange)
            self.pdiff_min = tf.div(self.action_input - self.pmin, self.prange)
            self.zeros_act_grad_filter = tf.zeros([self.action_size])
            self.act_grad = tf.placeholder(tf.float32, [None, self.action_size])
            self.grad_inverter = tf.select(tf.greater(self.act_grad, self.zeros_act_grad_filter), tf.mul(self.act_grad, self.pdiff_max), tf.mul(self.act_grad, self.pdiff_min))
ADMMutils.py 文件源码 项目:sparsecnn 作者: fkiaee 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def block_shrinkage_conv(V,mu,rho):
    coef = 0.5
    V_shape = tf.shape(V); one_val = tf.constant(1.0) 
    b = tf.div(mu,rho)
    V_shape1 = tf.concat(0,[tf.mul(tf.slice(V_shape,[2],[1]),tf.slice(V_shape,[3],[1])),tf.mul(tf.slice(V_shape,[0],[1]),tf.slice(V_shape,[1],[1]))])
    V = tf.reshape(tf.transpose(V,perm=[2,3,0,1]),V_shape1)
    norm_V = frobenius_norm_block(V,1)  
    norm_V_per_dimension = tf.div(norm_V,tf.cast(tf.slice(V_shape1,[1],[1]),'float'))
    zero_part = tf.zeros(V_shape1)
    zero_ind = tf.greater_equal(b,norm_V_per_dimension)
    num_zero = tf.reduce_sum(tf.cast(zero_ind,'float'))
#    f4 = lambda: tf.greater_equal(tf.truediv(tf.add(tf.reduce_min(fro),tf.reduce_mean(fro)),2.0),fro)
    f4 = lambda: tf.greater_equal(tf.reduce_mean(norm_V),norm_V)
    f5 = lambda: zero_ind
    zero_ind = tf.cond(tf.greater(num_zero,tf.mul(coef,tf.cast(V_shape1[0],'float'))),f4,f5)
    G = tf.select(zero_ind,zero_part,tf.mul(tf.sub(one_val,tf.div(b,tf.reshape(norm_V,[-1,1]))),V)) 
    G_shape = tf.concat(0,[tf.slice(V_shape,[2],[1]),tf.slice(V_shape,[3],[1]),tf.slice(V_shape,[0],[1]),tf.slice(V_shape,[1],[1])])
    G = tf.transpose(tf.reshape(G,G_shape),perm=[2,3,0,1])
    return G,zero_ind
ADMMutils.py 文件源码 项目:sparsecnn 作者: fkiaee 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def block_truncate_conv(V,mu,rho):
    coef = 0.5
    V_shape = tf.shape(V) 
    b = tf.sqrt(tf.div(tf.mul(2.,mu),rho)) #threshold 
    # Reshape the 4D tensor of weights to a 2D matrix with rows containing the conv filters in vectorized form.
    V_shape1 = tf.concat(0,[tf.mul(tf.slice(V_shape,[2],[1]),tf.slice(V_shape,[3],[1])),tf.mul(tf.slice(V_shape,[0],[1]),tf.slice(V_shape,[1],[1]))])
    V = tf.reshape(tf.transpose(V,perm=[2,3,0,1]),V_shape1)
    norm_V = frobenius_norm_block(V,1)  
    norm_V_per_dimension = tf.div(norm_V,tf.cast(tf.slice(V_shape1,[1],[1]),'float'))
    # Implementation of Eq.10 in the paper using if condition inside the TensorFlow graph with tf.cond
    zero_part = tf.zeros(V_shape1)
    zero_ind = tf.greater_equal(b,norm_V_per_dimension)
    num_zero = tf.reduce_sum(tf.cast(zero_ind,'float'))
    # You can pass parameters to the functions in tf.cond() using lambda
    f4 = lambda: tf.greater_equal(tf.reduce_mean(norm_V),norm_V)
    f5 = lambda: zero_ind
    zero_ind = tf.cond(tf.greater(num_zero,tf.mul(coef,tf.cast(V_shape1[0],'float'))),f4,f5)
    G = tf.select(zero_ind,zero_part,V) 
    G_shape = tf.concat(0,[tf.slice(V_shape,[2],[1]),tf.slice(V_shape,[3],[1]),tf.slice(V_shape,[0],[1]),tf.slice(V_shape,[1],[1])])
    G = tf.transpose(tf.reshape(G,G_shape),perm=[2,3,0,1])
    return G,zero_ind
activation.py 文件源码 项目:tfkaldi 作者: vrenkens 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _apply_func(self, activations, is_training, reuse):
        '''
        apply own functionality
        Args:
            activations: the ioutputs to the wrapped activation function
            is_training: whether or not the network is in training mode
            reuse: wheter or not the variables in the network should be reused
        Returns:
            the output to the activation function
        '''

        with tf.variable_scope('l2_norm', reuse=reuse):
            #compute the mean squared value
            sig = tf.reduce_mean(tf.square(activations), 1, keep_dims=True)

            #divide the input by the mean squared value
            normalized = activations/sig

            #if the mean squared value is larger then one select the normalized
            #value otherwise select the unnormalised one
            return tf.select(tf.greater(tf.reshape(sig, [-1]), 1),
                             normalized, activations)
loss.py 文件源码 项目:tensorflow-litterbox 作者: rwightman 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _compute_huber(predictions, labels, delta=1.0):
    predictions.get_shape().assert_is_compatible_with(labels.get_shape())
    predictions = tf.to_float(predictions)
    labels = tf.to_float(labels)
    delta = tf.to_float(delta)

    diff = predictions - labels
    diff_abs = tf.abs(diff)
    delta_fact = 0.5 * tf.square(delta)
    condition = tf.less(diff_abs, delta)
    left_opt = 0.5 * tf.square(diff)
    right_opt = delta * diff_abs - delta_fact
    losses_val = tf.select(condition, left_opt, right_opt)
    return losses_val


# Returns non-reduced tensor of unweighted losses with batch dimension matching inputs
detregionloss_bnum.py 文件源码 项目:VGG 作者: jackfan00 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def yoloconfidloss(y_true, y_pred, t):
    real_y_true = tf.select(t, y_true, K.zeros_like(y_true))
    pobj = K.sigmoid(y_pred)
    lo = K.square(real_y_true-pobj)
    value_if_true = lamda_confid_obj*(lo)
    value_if_false = lamda_confid_noobj*(lo)
    loss1 = tf.select(t, value_if_true, value_if_false)

    loss = K.mean(loss1) 
    #
    noobj = tf.select(t, K.zeros_like(y_pred), pobj)
    noobjcount = tf.select(t, K.zeros_like(y_pred), K.ones_like(y_pred))
    ave_anyobj = K.sum(noobj) / K.sum(noobjcount)
    #ave_anyobj = K.mean(pobj)
    obj = tf.select(t, pobj, K.zeros_like(y_pred))
    objcount = tf.select(t, K.ones_like(y_pred), K.zeros_like(y_pred))
    #ave_obj = K.mean( K.sum(obj, axis=1) / (K.sum(objcount, axis=1)+0.000001) ) # prevent div 0
    ave_obj =  K.sum(obj) / (K.sum(objcount)+0.000001)  # prevent div 0
    return loss, ave_anyobj, ave_obj

# shape is (gridcells*2,)
detregionloss.py 文件源码 项目:VGG 作者: jackfan00 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def yoloclassloss(y_true, y_pred, t):
        lo = K.square(y_true-y_pred)
        value_if_true = lamda_class*(lo)
        value_if_false = K.zeros_like(y_true)
        loss1 = tf.select(t, value_if_true, value_if_false)
    # only extract predicted class value at obj location
    cat = K.sum(tf.select(t, y_pred, K.zeros_like(y_pred)), axis=1)
    # check valid class value
    objsum = K.sum(y_true, axis=1)
    # if objsum > 0.5 , means it contain some valid obj(may be 1,2.. objs)
    isobj = K.greater(objsum, 0.5)
    # only extract class value at obj location
    valid_cat = tf.select(isobj, cat, K.zeros_like(cat))
    # prevent div 0
    ave_cat = tf.select(K.greater(K.sum(objsum),0.5), K.sum(valid_cat) / K.sum(objsum) , -1)
    return K.mean(loss1), ave_cat
hmc.py 文件源码 项目:dem 作者: hengyuan-hu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def sample(self):
        """Define the computation graph for one hmc sampling."""
        accept_rate, new_pos = hmc_sample(
            self.pos, self.stepsize, self.num_steps, self.potential_fn
        )
        new_avg_accept_rate = tf.add(
            self.avg_accept_slowness * self.avg_accept_rate,
            (1.0 - self.avg_accept_slowness) * accept_rate
        )
        new_stepsize = tf.select(new_avg_accept_rate > self.target_accept_rate,
                                 self.stepsize * self.stepsize_inc,
                                 self.stepsize * self.stepsize_dec)
        new_stepsize = tf.clip_by_value(
            new_stepsize, self.stepsize_min, self.stepsize_max
        )
        updates = [self.pos.assign(new_pos),
                   self.stepsize.assign(new_stepsize),
                   self.avg_accept_rate.assign(new_avg_accept_rate)]
        return new_pos, updates


# test =================
ternary.py 文件源码 项目:ternarynet 作者: czhu95 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def p_ternarize(x, p):

    x = tf.tanh(x)
    shape = x.get_shape()

    thre = tf.get_variable('T', trainable=False, collections=[tf.GraphKeys.VARIABLES, 'thresholds'],
            initializer=0.05)
    flat_x = tf.reshape(x, [-1])
    k = int(flat_x.get_shape().dims[0].value * (1 - p))
    topK, _ = tf.nn.top_k(tf.abs(flat_x), k)
    update_thre = thre.assign(topK[-1])
    tf.add_to_collection('update_thre_op', update_thre)

    mask = tf.zeros(shape)
    mask = tf.select((x > thre) | (x < -thre), tf.ones(shape), mask)

    with G.gradient_override_map({"Sign": "Identity", "Mul": "Add"}):
        w =  tf.sign(x) * tf.stop_gradient(mask)

    tf.histogram_summary(w.name, w)
    return w
ternary.py 文件源码 项目:ternarynet 作者: czhu95 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def tw_ternarize(x, thre):

    shape = x.get_shape()

    thre_x = tf.stop_gradient(tf.reduce_max(tf.abs(x)) * thre)

    w_p = tf.get_variable('Wp', collections=[tf.GraphKeys.VARIABLES, 'positives'], initializer=1.0)
    w_n = tf.get_variable('Wn', collections=[tf.GraphKeys.VARIABLES, 'negatives'], initializer=1.0)

    tf.scalar_summary(w_p.name, w_p)
    tf.scalar_summary(w_n.name, w_n)

    mask = tf.ones(shape)
    mask_p = tf.select(x > thre_x, tf.ones(shape) * w_p, mask)
    mask_np = tf.select(x < -thre_x, tf.ones(shape) * w_n, mask_p)
    mask_z = tf.select((x < thre_x) & (x > - thre_x), tf.zeros(shape), mask)

    with G.gradient_override_map({"Sign": "Identity", "Mul": "Add"}):
        w =  tf.sign(x) * tf.stop_gradient(mask_z)

    w = w * mask_np

    tf.histogram_summary(w.name, w)
    return w
train_tuner.py 文件源码 项目:neural-abstract-anaphora 作者: amarasovic 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def tf_nan_to_zeros_float32(tensor):
    """
    Mask NaN values with zeros
    :param tensor that might have Nan values
    :return: tensor with replaced Nan values with zeros
    """
    return tf.select(tf.is_nan(tensor), tf.zeros(tf.shape(tensor), dtype=tf.float32), tensor)
dqn_utils.py 文件源码 项目:deep-q-learning 作者: alvinwan 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def huber_loss(x, delta=1.0):
    # https://en.wikipedia.org/wiki/Huber_loss
    return tf.select(
        tf.abs(x) < delta,
        tf.square(x) * 0.5,
        delta * (tf.abs(x) - 0.5 * delta)
    )
tensorflow_grad_inverter.py 文件源码 项目:ddpg-aigym 作者: stevenpjg 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, action_bounds):

        self.sess = tf.InteractiveSession()       

        self.action_size = len(action_bounds[0])

        self.action_input = tf.placeholder(tf.float32, [None, self.action_size])
        self.pmax = tf.constant(action_bounds[0], dtype = tf.float32)
        self.pmin = tf.constant(action_bounds[1], dtype = tf.float32)
        self.prange = tf.constant([x - y for x, y in zip(action_bounds[0],action_bounds[1])], dtype = tf.float32)
        self.pdiff_max = tf.div(-self.action_input+self.pmax, self.prange)
        self.pdiff_min = tf.div(self.action_input - self.pmin, self.prange)
        self.zeros_act_grad_filter = tf.zeros([self.action_size])
        self.act_grad = tf.placeholder(tf.float32, [None, self.action_size])
        self.grad_inverter = tf.select(tf.greater(self.act_grad, self.zeros_act_grad_filter), tf.mul(self.act_grad, self.pdiff_max), tf.mul(self.act_grad, self.pdiff_min))
pose_model.py 文件源码 项目:Face-Pose-Net 作者: fengju514 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _relu(self, x, leakiness=0.0):
    """Relu, with optional leaky support."""
    return tf.select(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
ops.py 文件源码 项目:RFR-solution 作者: baoblackcoal 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def clipped_error(x):
  # Huber loss
  try:
    return tf.select(tf.abs(x) < 1.0, 0.5 * tf.square(x), tf.abs(x) - 0.5)
  except:
    return tf.where(tf.abs(x) < 1.0, 0.5 * tf.square(x), tf.abs(x) - 0.5)
  # return 0.5 * tf.square(x)
nn.py 文件源码 项目:mnist_LeNet 作者: LuxxxLucy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sample_from_discretized_mix_logistic(l, nr_mix):
    ls = int_shape(l)
    xs = ls[:-1] + [3]
    # unpack parameters
    logit_probs = l[:, :, :, :nr_mix]
    l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3])
    # sample mixture indicator from softmax
    sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform(
        logit_probs.get_shape(), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32)
    sel = tf.reshape(sel, xs[:-1] + [1, nr_mix])
    # select logistic parameters
    means = tf.reduce_sum(l[:, :, :, :, :nr_mix] * sel, 4)
    log_scales = tf.maximum(tf.reduce_sum(
        l[:, :, :, :, nr_mix:2 * nr_mix] * sel, 4), -7.)
    coeffs = tf.reduce_sum(tf.nn.tanh(
        l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4)
    # sample from logistic & clip to interval
    # we don't actually round to the nearest 8bit value when sampling
    u = tf.random_uniform(means.get_shape(), minval=1e-5, maxval=1. - 1e-5)
    x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u))
    x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.)
    x1 = tf.minimum(tf.maximum(
        x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.)
    x2 = tf.minimum(tf.maximum(
        x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.)
    return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
tensorflow_backend.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def elu(x, alpha=1.):
    '''Exponential linear unit.

    # Arguments
        x: Tensor to compute the activation function for.
        alpha: scalar
    '''
    res = tf.nn.elu(x)
    if alpha == 1:
        return res
    else:
        return tf.select(x > 0, res, alpha * res)
tensorflow_backend.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def random_binomial(shape, p=0.0, dtype=_FLOATX, seed=None):
    if seed is None:
        seed = np.random.randint(10e6)
    return tf.select(tf.random_uniform(shape, dtype=dtype, seed=seed) <= p,
                     tf.ones(shape, dtype=dtype),
                     tf.zeros(shape, dtype=dtype))

# CTC
# tensorflow has a native implemenation, but it uses sparse tensors
# and therefore requires a wrapper for Keras. The functions below convert
# dense to sparse tensors and also wraps up the beam search code that is
# in tensorflow's CTC implementation
dqn_utils.py 文件源码 项目:rl_algorithms 作者: DanielTakeshi 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def huber_loss(x, delta=1.0):
    # https://en.wikipedia.org/wiki/Huber_loss
    return tf.select(
        tf.abs(x) < delta,
        tf.square(x) * 0.5,
        delta * (tf.abs(x) - 0.5 * delta)
    )
tensorflow_backend.py 文件源码 项目:keraflow 作者: ipod825 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def random_binomial(self, shape, p=0.0, dtype=_FLOATX):
        return tf.select(tf.random_uniform(shape, dtype=dtype) <= p, tf.ones(shape), tf.zeros(shape))

    # NUMPY API
loss.py 文件源码 项目:TF-phrasecut-public 作者: chenxi116 项目源码 文件源码 阅读 131 收藏 0 点赞 0 评论 0
def logistic_loss_cond(scores, labels):
    # Classification loss as the average of weighed per-score loss
    cond = tf.select(tf.equal(labels, tf.zeros(tf.shape(labels))), 
        tf.zeros(tf.shape(labels)),
        tf.nn.sigmoid_cross_entropy_with_logits(logits = scores, labels = labels)
        )
    cls_loss = tf.reduce_mean(tf.reduce_sum(cond, [1, 2, 3]))

    return cls_loss
model_seg+pos.py 文件源码 项目:tensorflow-CWS-LSTM 作者: elvinpoon 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def certainty(self):
        certainty = self.seg_prediction * tf.log(self.seg_prediction)
        certainty = -tf.reduce_sum(certainty,reduction_indices=2)
        s1 = tf.ones(tf.shape(certainty))
        csum = tf.cumsum(s1,axis=1)
        mask = tf.less_equal(csum,tf.cast(tf.tile(tf.expand_dims(self._length,1),[1,tf.shape(certainty)[1]]),tf.float32))
        mask = tf.select(mask, tf.ones(tf.shape(certainty)),
                  tf.zeros(tf.shape(certainty)))
        certainty *= mask
        certainty = tf.reduce_sum(certainty, reduction_indices=1)
        return certainty


问题


面经


文章

微信
公众号

扫码关注公众号