python类not_equal()的实例源码

model_seg+pos.py 文件源码 项目:tensorflow-CWS-LSTM 作者: elvinpoon 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def seg_num_of_error(self):
        mistakes = tf.not_equal(
            tf.argmax(self._target, 2), tf.argmax(self.seg_prediction, 2))
        mistakes = tf.cast(mistakes, tf.float32)
        mask = tf.sign(tf.reduce_max(self.target, reduction_indices=2))
        mistakes *= mask
        # Average over actual sequence lengths.
        mistakes = tf.reduce_sum(mistakes)
        return mistakes
model_seg+pos.py 文件源码 项目:tensorflow-CWS-LSTM 作者: elvinpoon 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def pos_num_of_error(self):
        mistakes = tf.not_equal(
            tf.argmax(self._pos, 2), tf.argmax(self.pos_prediction, 2))
        mistakes = tf.cast(mistakes, tf.float32)
        mask = tf.sign(tf.reduce_max(self._pos, reduction_indices=2))
        mistakes *= mask
        # Average over actual sequence lengths.
        mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
        return mistakes
rnn-speed.py 文件源码 项目:LSTM-TensorSpark 作者: EmanuelOverflow 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def compute_error(self, test_state, target, s=None):
        prediction = self.predict(test_state, s)
        incorrects = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1)) # always 1?
        return tf.reduce_mean(tf.cast(incorrects, tf.float32)) # what is reduce_mean?
rnn-no-spark.py 文件源码 项目:LSTM-TensorSpark 作者: EmanuelOverflow 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def compute_error(self, test_state, target, s=None):
        prediction = self.predict(test_state, s)
        incorrects = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1)) # always 1?
        return tf.reduce_mean(tf.cast(incorrects, tf.float32)) # what is reduce_mean?
rnn.py 文件源码 项目:LSTM-TensorSpark 作者: EmanuelOverflow 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def compute_error(self, test_state, target, s=None):
        prediction = self.predict(test_state, s)
        incorrects = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1)) # always 1?
        return tf.reduce_mean(tf.cast(incorrects, tf.float32)) # what is reduce_mean?
metrics.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def char_accuracy(predictions, targets, rej_char, streaming=False):
    """Computes character level accuracy.
    Both predictions and targets should have the same shape
    [batch_size x seq_length].

    Args:
        predictions: predicted characters ids.
        targets: ground truth character ids.
        rej_char: the character id used to mark an empty element (end of sequence).
        streaming: if True, uses the streaming mean from the slim.metric module.

    Returns:
        a update_ops for execution and value tensor whose value on evaluation
            returns the total character accuracy.
    """
    with tf.variable_scope('CharAccuracy'):
        predictions.get_shape().assert_is_compatible_with(targets.get_shape())

        targets = tf.to_int32(targets)
        const_rej_char = tf.constant(rej_char, shape=targets.get_shape())
        weights = tf.to_float(tf.not_equal(targets, const_rej_char))
        correct_chars = tf.to_float(tf.equal(predictions, targets))
        accuracy_per_example = tf.div(tf.reduce_sum(tf.multiply(
            correct_chars, weights), 1),  tf.reduce_sum(weights, 1))
        if streaming:
            return tf.contrib.metrics.streaming_mean(accuracy_per_example)
        else:
            return tf.reduce_mean(accuracy_per_example)
metrics.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sequence_accuracy(predictions, targets, rej_char, streaming=False):
    """Computes sequence level accuracy.
    Both input tensors should have the same shape: [batch_size x seq_length].

    Args:
        predictions: predicted character classes.
        targets: ground truth character classes.
        rej_char: the character id used to mark empty element (end of sequence).
        streaming: if True, uses the streaming mean from the slim.metric module.

    Returns:
        a update_ops for execution and value tensor whose value on evaluation
            returns the total sequence accuracy.
    """

    with tf.variable_scope('SequenceAccuracy'):
        predictions.get_shape().assert_is_compatible_with(targets.get_shape())

        targets = tf.to_int32(targets)
        const_rej_char = tf.constant(
            rej_char, shape=targets.get_shape(), dtype=tf.int32)
        include_mask = tf.not_equal(targets, const_rej_char)
        include_predictions = tf.to_int32(
            tf.where(include_mask, predictions, tf.zeros_like(predictions) + rej_char))
        correct_chars = tf.to_float(tf.equal(include_predictions, targets))
        correct_chars_counts = tf.cast(
            tf.reduce_sum(correct_chars, reduction_indices=[1]), dtype=tf.int32)
        target_length = targets.get_shape().dims[1].value
        target_chars_counts = tf.constant(
            target_length, shape=correct_chars_counts.get_shape())
        accuracy_per_example = tf.to_float(
            tf.equal(correct_chars_counts, target_chars_counts))
        if streaming:
            return tf.contrib.metrics.streaming_mean(accuracy_per_example)
        else:
            return tf.reduce_mean(accuracy_per_example)
beam_decoder.py 文件源码 项目:neural-chat 作者: henriblancke 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def decode_sparse(self, include_stop_tokens=True):
        dense_symbols, logprobs = self.decode_dense()
        mask = tf.not_equal(dense_symbols, self.stop_token)
        if include_stop_tokens:
            mask = tf.concat(1, [tf.ones_like(mask[:, :1]), mask[:, :-1]])
        return sparse_boolean_mask(dense_symbols, mask), logprobs
core_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def setUp(self):
    super(CoreBinaryOpsTest, self).setUp()

    self.x_probs_broadcast_tensor = tf.reshape(
        self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])

    self.channel_probs_broadcast_tensor = tf.reshape(
        self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])

    # == and != are not element-wise for tf.Tensor, so they shouldn't be
    # elementwise for LabeledTensor, either.
    self.ops = [
        ('add', operator.add, tf.add, core.add),
        ('sub', operator.sub, tf.sub, core.sub),
        ('mul', operator.mul, tf.mul, core.mul),
        ('div', operator.truediv, tf.div, core.div),
        ('mod', operator.mod, tf.mod, core.mod),
        ('pow', operator.pow, tf.pow, core.pow_function),
        ('equal', None, tf.equal, core.equal),
        ('less', operator.lt, tf.less, core.less),
        ('less_equal', operator.le, tf.less_equal, core.less_equal),
        ('not_equal', None, tf.not_equal, core.not_equal),
        ('greater', operator.gt, tf.greater, core.greater),
        ('greater_equal', operator.ge, tf.greater_equal, core.greater_equal),
    ]
    self.test_lt_1 = self.x_probs_lt
    self.test_lt_2 = self.channel_probs_lt
    self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
    self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
    self.broadcast_axes = [self.a0, self.a1, self.a3]
tensorflow_backend.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def not_equal(x, y):
    '''Element-wise inequality between two tensors.
    Returns a bool tensor.
    '''
    return tf.not_equal(x, y)
s2s.py 文件源码 项目:chars2word2vec 作者: ilya-shenbin 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def w2v_error(self):
        # mistakes = tf.not_equal(tf.argmax(self.target, 1), tf.argmax(self.encoder, 1))
        # return tf.reduce_mean(tf.cast(mistakes, tf.float32))
        y_true = tf.nn.l2_normalize(self.target, dim=-1)
        y_pred = tf.nn.l2_normalize(self.w2v_predictor, dim=-1)
        return -tf.reduce_mean(y_true * y_pred)
layers.py 文件源码 项目:deepsleepnet 作者: akaraspt 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def retrieve_seq_length_op3(data, pad_val=0): # HangSheng: return tensor for sequence length, if input is tf.string
    data_shape_size = data.get_shape().ndims
    if data_shape_size == 3:
        return tf.reduce_sum(tf.cast(tf.reduce_any(tf.not_equal(data, pad_val), axis=2), dtype=tf.int32), 1)
    elif data_shape_size == 2:
        return tf.reduce_sum(tf.cast(tf.not_equal(data, pad_val), dtype=tf.int32), 1)
    elif data_shape_size == 1:
        raise ValueError("retrieve_seq_length_op3: data has wrong shape!")
    else:
        raise ValueError("retrieve_seq_length_op3: handling data_shape_size %s hasn't been implemented!" % (data_shape_size))
layers.py 文件源码 项目:deepsleepnet 作者: akaraspt 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def target_mask_op(data, pad_val=0):        # HangSheng: return tensor for mask,if input is tf.string
    data_shape_size = data.get_shape().ndims
    if data_shape_size == 3:
        return tf.cast(tf.reduce_any(tf.not_equal(data, pad_val), axis=2), dtype=tf.int32)
    elif data_shape_size == 2:
        return tf.cast(tf.not_equal(data, pad_val), dtype=tf.int32)
    elif data_shape_size == 1:
        raise ValueError("target_mask_op: data has wrong shape!")
    else:
        raise ValueError("target_mask_op: handling data_shape_size %s hasn't been implemented!" % (data_shape_size))


# Dynamic RNN
layers.py 文件源码 项目:DBQA 作者: nanfeng1101 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def errors(self, y):
        return tf.reduce_mean(tf.cast(tf.not_equal(self.y_pred, tf.arg_max(y,1)), dtype=tf.float32))
4-mnist-using-contrib.py 文件源码 项目:npfl114 作者: ufal 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __init__(self, logdir, experiment, threads):
        # Construct the graph
        with tf.name_scope("inputs"):
            self.images = tf.placeholder(tf.float32, [None, WIDTH, HEIGHT, 1], name="images")
            self.labels = tf.placeholder(tf.int64, [None], name="labels")
            flattened_images = layers.flatten(self.images)

        hidden_layer = layers.fully_connected(flattened_images, num_outputs=HIDDEN, activation_fn=tf.nn.relu, scope="hidden_layer")
        output_layer = layers.fully_connected(hidden_layer, num_outputs=LABELS, activation_fn=None, scope="output_layer")

        loss = losses.sparse_softmax_cross_entropy(output_layer, self.labels, scope="loss")
        self.training = layers.optimize_loss(loss, None, None, tf.train.AdamOptimizer(), summaries=['loss', 'gradients', 'gradient_norm'], name='training')

        with tf.name_scope("accuracy"):
            predictions = tf.argmax(output_layer, 1, name="predictions")
            accuracy = metrics.accuracy(predictions, self.labels)
            tf.scalar_summary("training/accuracy", accuracy)

        with tf.name_scope("confusion_matrix"):
            confusion_matrix = metrics.confusion_matrix(predictions, self.labels, weights=tf.not_equal(predictions, self.labels), dtype=tf.float32)
            confusion_image = tf.reshape(confusion_matrix, [1, LABELS, LABELS, 1])

        # Summaries
        self.summaries = {'training': tf.merge_all_summaries() }
        for dataset in ["dev", "test"]:
            self.summaries[dataset] = tf.merge_summary([tf.scalar_summary(dataset + "/accuracy", accuracy),
                                                        tf.image_summary(dataset + "/confusion_matrix", confusion_image)])

        # Create the session
        self.session = tf.Session(config=tf.ConfigProto(inter_op_parallelism_threads=threads,
                                                        intra_op_parallelism_threads=threads))

        self.session.run(tf.initialize_all_variables())
        timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S")
        self.summary_writer = tf.train.SummaryWriter("{}/{}-{}".format(logdir, timestamp, experiment), graph=self.session.graph, flush_secs=10)
        self.steps = 0
negative_sampling.py 文件源码 项目:lda2vec-tf 作者: meereeum 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def __call__(self, embed, train_labels):

        with tf.name_scope("negative_sampling"):
            # mask out skip or OOV
            # if switched on, this yields ...
            # UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.

            # mask = tf.greater(train_labels, NegativeSampling.IGNORE_LABEL_MAX)
            # # mask = tf.not_equal(train_labels, NegativeSampling.IGNORE_LABEL)
            # embed = tf.boolean_mask(embed, mask)
            # train_labels = tf.expand_dims(tf.boolean_mask(train_labels, mask), -1)
            train_labels = tf.expand_dims(train_labels, -1)

            # Compute the average NCE loss for the batch.
            # tf.nce_loss automatically draws a new sample of the negative labels each
            # time we evaluate the loss.
            # By default this uses a log-uniform (Zipfian) distribution for sampling
            # and therefore assumes labels are sorted - which they are!

            sampler = (self.freqs if self.freqs is None # default to unigram
                       else tf.nn.fixed_unigram_candidate_sampler(
                               train_labels, num_true=1, num_sampled=self.sample_size,
                               unique=True, range_max=self.vocab_size,
                               #num_reserved_ids=2, # skip or OoV
                               # ^ only if not in unigrams
                               distortion=self.power, unigrams=list(self.freqs)))

            loss = tf.reduce_mean(
                    tf.nn.nce_loss(self.nce_weights, self.nce_biases,
                                   embed, # summed doc and context embedding
                                   train_labels, self.sample_size, self.vocab_size,
                                   sampled_values=sampler), # log-unigram if not specificed
                    name="nce_batch_loss")
            # TODO negative sampling versus NCE
            # TODO uniform vs. Zipf with exponent `distortion` param
            #https://www.tensorflow.org/versions/r0.12/api_docs/python/nn.html#log_uniform_candidate_sampler

        return loss
layers.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def retrieve_seq_length_op3(data, pad_val=0): # HangSheng: return tensor for sequence length, if input is tf.string
    data_shape_size = data.get_shape().ndims
    if data_shape_size == 3:
        return tf.reduce_sum(tf.cast(tf.reduce_any(tf.not_equal(data, pad_val), axis=2), dtype=tf.int32), 1)
    elif data_shape_size == 2:
        return tf.reduce_sum(tf.cast(tf.not_equal(data, pad_val), dtype=tf.int32), 1)
    elif data_shape_size == 1:
        raise ValueError("retrieve_seq_length_op3: data has wrong shape!")
    else:
        raise ValueError("retrieve_seq_length_op3: handling data_shape_size %s hasn't been implemented!" % (data_shape_size))
layers.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def target_mask_op(data, pad_val=0):        # HangSheng: return tensor for mask,if input is tf.string
    data_shape_size = data.get_shape().ndims
    if data_shape_size == 3:
        return tf.cast(tf.reduce_any(tf.not_equal(data, pad_val), axis=2), dtype=tf.int32)
    elif data_shape_size == 2:
        return tf.cast(tf.not_equal(data, pad_val), dtype=tf.int32)
    elif data_shape_size == 1:
        raise ValueError("target_mask_op: data has wrong shape!")
    else:
        raise ValueError("target_mask_op: handling data_shape_size %s hasn't been implemented!" % (data_shape_size))


# Dynamic RNN
recognitionModel.py 文件源码 项目:TikZ 作者: ellisk42 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def accuracy(self):
        a = tf.equal(self.hard,self.targetPlaceholder)
        for decoder in self.decoders:
            if decoder.token != STOP:
                vector = decoder.accuracyVector()
                if vector != True:
                    a = tf.logical_and(a,
                                       tf.logical_or(vector, tf.not_equal(self.hard,decoder.token)))
        return tf.reduce_mean(tf.cast(a, tf.float32))
tf_tree_lstm.py 文件源码 项目:RecursiveNN 作者: sapruash 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_embedding(self):

        #embed=np.load('glove{0}_uniform.npy'.format(self.emb_dim))
        with tf.variable_scope("Embed",regularizer=None):
            embedding=tf.get_variable('embedding',[self.num_emb,
                                                   self.emb_dim]
                        ,initializer=tf.random_uniform_initializer(-0.05,0.05),trainable=True,regularizer=None)
            ix=tf.to_int32(tf.not_equal(self.input,-1))*self.input
            emb_tree=tf.nn.embedding_lookup(embedding,ix)
            emb_tree=emb_tree*(tf.expand_dims(
                        tf.to_float(tf.not_equal(self.input,-1)),2))

            return emb_tree


问题


面经


文章

微信
公众号

扫码关注公众号