def segment_sample_select(probs, segment_ids):
num_segments = tf.reduce_max(segment_ids) + 1
sampled = tf.random_uniform([num_segments])
def scan_fn(acc, x):
p, i = x[0], x[1]
prev_v = tf.gather(acc[0], i)
new_probs = acc[0] + tf.one_hot(i, num_segments, p)
select = tf.logical_and(tf.less(prev_v, 0.0), tf.greater_equal(prev_v + p, 0.0))
return new_probs, select
_, selection = tf.scan(scan_fn, (probs, segment_ids), initializer=(-sampled, False))
return selection
python类greater_equal()的实例源码
def greater_equal(x, y):
'''Element-wise truth value of (x >= y).
Returns a bool tensor.
'''
return tf.greater_equal(x, y)
def apply_stats(self, statsUpdates):
""" compute stats and update/apply the new stats to the running average
"""
def updateAccumStats():
if self._full_stats_init:
return tf.cond(tf.greater(self.sgd_step, self._cold_iter), lambda: tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)), tf.no_op)
else:
return tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter))
def updateRunningAvgStats(statsUpdates, fac_iter=1):
# return tf.cond(tf.greater_equal(self.factor_step,
# tf.convert_to_tensor(fac_iter)), lambda:
# tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op)
return tf.group(*self._apply_stats(statsUpdates))
if self._async_stats:
# asynchronous stats update
update_stats = self._apply_stats(statsUpdates)
queue = tf.FIFOQueue(1, [item.dtype for item in update_stats], shapes=[
item.get_shape() for item in update_stats])
enqueue_op = queue.enqueue(update_stats)
def dequeue_stats_op():
return queue.dequeue()
self.qr_stats = tf.train.QueueRunner(queue, [enqueue_op])
update_stats_op = tf.cond(tf.equal(queue.size(), tf.convert_to_tensor(
0)), tf.no_op, lambda: tf.group(*[dequeue_stats_op(), ]))
else:
# synchronous stats update
update_stats_op = tf.cond(tf.greater_equal(
self.stats_step, self._stats_accum_iter), lambda: updateRunningAvgStats(statsUpdates), updateAccumStats)
self._update_stats_op = update_stats_op
return update_stats_op
def __ge__(self, other):
return tf.greater_equal(self, other)
# slicing and indexing
def multi_label(prediction_batch, labels_batch, threshold=0.5, moving_average=True):
with tf.variable_scope('metrics'):
threshold_graph = tf.constant(threshold, name='threshold')
zero_point_five = tf.constant(0.5)
predicted_bool = tf.greater_equal(prediction_batch, threshold_graph)
real_bool = tf.greater_equal(labels_batch, zero_point_five)
return _metrics(predicted_bool, real_bool, moving_average)
text_classification_model_simple.py 文件源码
项目:kaggle_redefining_cancer_treatment
作者: jorgemf
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def remove_padding(self, input_text):
# calculate max length of the input_text
mask = tf.greater_equal(input_text, 0) # true for words false for padding
sequence_length = tf.reduce_sum(tf.cast(mask, tf.int32), 1)
# truncate the input text to max length
max_sequence_length = tf.reduce_max(sequence_length)
input_text_length = tf.shape(input_text)[1]
empty_padding_lenght = input_text_length - max_sequence_length
input_text, _ = tf.split(input_text, [max_sequence_length, empty_padding_lenght], axis=1)
return input_text, sequence_length
def finished(self, time, output):
"""Check which sentences are finished.
Arguments:
time: a `Tensor` of rank `0D` (i.e. a scalar) with the 0-based value of the
current step in the loop.
output: a `Tensor` of rank `2D` and shape `[batch_size, num_classes]` representing
the current output of the model, i.e. abatch of probability distribution estimations
over the output classes.
Returns:
a `Tensor` of shape `[batch_size]` of `tf.bool` elements, indicating for each
position if the corresponding sequence has terminated or not. A sequence is
has terminated if the current step is greater or equal the number of steps allowed
(defined in the `lengths` input argument) and if the `argmax` over the output
probability distribution ends up in the class that has id equal to the `EOS` symbol
(if provided).
"""
length = time + 1
finished = tf.greater_equal(length, self._lengths)
if finished.get_shape().ndims == 0:
batch = [utils.get_dimension(output, 0)]
finished = tf.tile([finished], batch)
if self._EOS is not None:
ids = tf.cast(tf.argmax(output, axis=-1), tf.int32)
eos = tf.equal(ids, self._EOS)
finished = tf.logical_or(finished, eos)
return finished
def test_iterations(self):
"""Test the number of iterations."""
lengths = tf.constant([1, 2, 3], dtype=tf.int32)
def _helper_finished(time, _):
return tf.greater_equal(time + 1, lengths)
helper = mock.Mock()
helper.finished.side_effect = _helper_finished
batch_size = utils.get_dimension(lengths, 0)
inp_size, state_size, output_size = 2, 5, 2
decoder = mock.Mock()
decoder.init_input.side_effect = lambda: tf.zeros([batch_size, inp_size])
decoder.init_state.side_effect = lambda: tf.ones([batch_size, state_size])
decoder.zero_output.side_effect = lambda: tf.zeros([batch_size, output_size])
decoder.step.side_effect = lambda t, i, s:\
((i + 1), 3 * (i + 1), (s + 2), tf.tile([False], [batch_size]))
output_exp = np.asarray(
[[[1, 1], [0, 0], [0, 0]],
[[1, 1], [4, 4], [0, 0]],
[[1, 1], [4, 4], [13, 13]]],
dtype=np.float32) # pylint: disable=E1101,I0011
state_exp = np.asarray(
[[7, 7, 7, 7, 7],
[7, 7, 7, 7, 7],
[7, 7, 7, 7, 7]],
dtype=np.float32) # pylint: disable=E1101,I0011
dyndec = layers.DynamicDecoder(decoder, helper)
output_t, state_t = dyndec.decode()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
output_act, state_act = sess.run([output_t, state_t])
self.assertAllEqual(output_exp, output_act)
self.assertAllEqual(state_exp, state_act)
def optimize(self, G_loss, D_Y_loss, F_loss, D_X_loss):
def make_optimizer(loss, variables, name='Adam'):
""" Adam optimizer with learning rate 0.0002 for the first 100k steps (~100 epochs)
and a linearly decaying rate that goes to zero over the next 100k steps
"""
global_step = tf.Variable(0, trainable=False)
starter_learning_rate = self.learning_rate
end_learning_rate = 0.0
start_decay_step = 100000
decay_steps = 100000
beta1 = self.beta1
learning_rate = (
tf.where(
tf.greater_equal(global_step, start_decay_step),
tf.train.polynomial_decay(starter_learning_rate, global_step-start_decay_step,
decay_steps, end_learning_rate,
power=1.0),
starter_learning_rate
)
)
tf.summary.scalar('learning_rate/{}'.format(name), learning_rate)
learning_step = (
tf.train.AdamOptimizer(learning_rate, beta1=beta1, name=name)
.minimize(loss, global_step=global_step, var_list=variables)
)
return learning_step
G_optimizer = make_optimizer(G_loss, self.G.variables, name='Adam_G')
D_Y_optimizer = make_optimizer(D_Y_loss, self.D_Y.variables, name='Adam_D_Y')
F_optimizer = make_optimizer(F_loss, self.F.variables, name='Adam_F')
D_X_optimizer = make_optimizer(D_X_loss, self.D_X.variables, name='Adam_D_X')
with tf.control_dependencies([G_optimizer, D_Y_optimizer, F_optimizer, D_X_optimizer]):
return tf.no_op(name='optimizers')
tensorflow_backend.py 文件源码
项目:deep-learning-keras-projects
作者: jasmeetsb
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def greater_equal(x, y):
"""Element-wise truth value of (x >= y).
# Returns
A bool tensor.
"""
return tf.greater_equal(x, y)
def multi_label(prediction_batch, labels_batch, threshold=0.5, moving_average=True):
with tf.variable_scope('metrics'):
threshold_graph = tf.constant(threshold, name='threshold')
zero_point_five = tf.constant(0.5)
predicted_bool = tf.greater_equal(prediction_batch, threshold_graph)
real_bool = tf.greater_equal(labels_batch, zero_point_five)
return _metrics(predicted_bool, real_bool, moving_average)
def _get_valid_sample_fraction(labels, p=0):
"""return fraction of non-negative examples, the ignored examples have been marked as negative"""
num_valid = tf.reduce_sum(tf.cast(tf.greater_equal(labels, p), tf.float32))
num_example = tf.cast(tf.size(labels), tf.float32)
frac = tf.cond(tf.greater(num_example, 0), lambda:num_valid / num_example,
lambda: tf.cast(0, tf.float32))
frac_ = tf.cond(tf.greater(num_valid, 0), lambda:num_example / num_valid,
lambda: tf.cast(0, tf.float32))
return frac, frac_
def _crop(image, offset_height, offset_width, crop_height, crop_width):
"""Crops the given image using the provided offsets and sizes.
Note that the method doesn't assume we know the input image size but it does
assume we know the input image rank.
Args:
image: an image of shape [height, width, channels].
offset_height: a scalar tensor indicating the height offset.
offset_width: a scalar tensor indicating the width offset.
crop_height: the height of the cropped image.
crop_width: the width of the cropped image.
Returns:
the cropped (and resized) image.
Raises:
InvalidArgumentError: if the rank is not 3 or if the image dimensions are
less than the crop size.
"""
original_shape = tf.shape(image)
rank_assertion = tf.Assert(
tf.equal(tf.rank(image), 3),
['Rank of image must be equal to 3.'])
with tf.control_dependencies([rank_assertion]):
cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]])
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_height),
tf.greater_equal(original_shape[1], crop_width)),
['Crop size greater than the image size.'])
offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))
# Use tf.slice instead of crop_to_bounding box as it accepts tensors to
# define the crop size.
with tf.control_dependencies([size_assertion]):
image = tf.slice(image, offsets, cropped_shape)
return tf.reshape(image, cropped_shape)
def _crop(self, image, offset_height, offset_width, crop_height, crop_width):
"""Crops the given image using the provided offsets and sizes.
Note that the method doesn't assume we know the input image size but it does
assume we know the input image rank.
Args:
image: an image of shape [height, width, channels].
offset_height: a scalar tensor indicating the height offset.
offset_width: a scalar tensor indicating the width offset.
crop_height: the height of the cropped image.
crop_width: the width of the cropped image.
Returns:
the cropped (and resized) image.
Raises:
InvalidArgumentError: if the rank is not 3 or if the image dimensions are
less than the crop size.
"""
original_shape = tf.shape(image)
rank_assertion = tf.Assert(
tf.equal(tf.rank(image), 3),
['Rank of image must be equal to 3.'])
with tf.control_dependencies([rank_assertion]):
cropped_shape = tf.stack(
[crop_height, crop_width, original_shape[2]])
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_height),
tf.greater_equal(original_shape[1], crop_width)),
['Crop size greater than the image size.'])
offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))
with tf.control_dependencies([size_assertion]):
image = tf.slice(image, offsets, cropped_shape)
return tf.reshape(image, cropped_shape)
def _crop(self, image, offset_height, offset_width, crop_height, crop_width):
"""Crops the given image using the provided offsets and sizes.
Note that the method doesn't assume we know the input image size but it does
assume we know the input image rank.
Args:
image: an image of shape [height, width, channels].
offset_height: a scalar tensor indicating the height offset.
offset_width: a scalar tensor indicating the width offset.
crop_height: the height of the cropped image.
crop_width: the width of the cropped image.
Returns:
the cropped (and resized) image.
Raises:
InvalidArgumentError: if the rank is not 3 or if the image dimensions are
less than the crop size.
"""
original_shape = tf.shape(image)
rank_assertion = tf.Assert(
tf.equal(tf.rank(image), 3),
['Rank of image must be equal to 3.'])
with tf.control_dependencies([rank_assertion]):
cropped_shape = tf.stack(
[crop_height, crop_width, original_shape[2]])
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_height),
tf.greater_equal(original_shape[1], crop_width)),
['Crop size greater than the image size.'])
offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))
with tf.control_dependencies([size_assertion]):
image = tf.slice(image, offsets, cropped_shape)
return tf.reshape(image, cropped_shape)
def crop_to_fixed_size(img_tensor,annotation_tensor,output_shape):
"""
the output_shape must be smaller than the input_shape
:param img_tensor: [w,h,depth]
:param annotation_tensor: [w,h,1]
:param output_shape:
:param mask_out_num:
:return: (output_shape,output_shape,3) (output_shape,output_shape,1)
"""
original_shape = tf.shape(img_tensor)
crop_width, crop_height = output_shape[0],output_shape[1]
image_width, image_height = original_shape[0],original_shape[1]
img_cropped_shape = tf.stack([output_shape[0], output_shape[1], 3])
annotate_cropped_shape = tf.stack([output_shape[0], output_shape[1], 1])
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_width),
tf.greater_equal(original_shape[1], crop_height)),
['Crop size greater than the image size.'])
max_offset_height = tf.reshape(image_height - crop_height + 1, [])
max_offset_width = tf.reshape(image_width - crop_width + 1, [])
offset_height = tf.random_uniform(
[], maxval=max_offset_height, dtype=tf.int32)
offset_width = tf.random_uniform(
[], maxval=max_offset_width, dtype=tf.int32)
offsets = tf.to_int32(tf.stack([offset_width, offset_height, 0]))
annotation_tensor = tf.to_int32(annotation_tensor)
# Use tf.slice instead of crop_to_bounding box as it accepts tensors to
# define the crop size.
with tf.control_dependencies([size_assertion]):
image = tf.slice(img_tensor, offsets, img_cropped_shape)
annotate = tf.slice(annotation_tensor,offsets,annotate_cropped_shape)
return tf.reshape(image, img_cropped_shape),tf.reshape(annotate,annotate_cropped_shape)
def crop_or_resize_to_fixed_size_and_rotate_output(img_tensor,
annotation_tensor,
output_shape,
mask_out_num=None):
"""Returns tensor of a size (output_shape, output_shape, depth) and (output_shape, output_shape, 1).
The function returns tensor that is of a size (output_shape, output_shape, depth)
which is randomly cropped and rotate
Parameters
----------
img_tensor : Tensor of size (width, height, depth)
Tensor with image
annotation_tensor : Tensor of size (width, height, 1)
Tensor with respective annotation
output_shape : Tensor or list [int, int]
Tensor of list representing desired output shape
mask_out_number : int
Number representing the mask out value.
Returns
-------
cropped_padded_img : Tensor of size (output_shape[0], output_shape[1], 3).
Image Tensor that was randomly scaled
cropped_padded_annotation : Tensor of size (output_shape[0], output_shape[1], 1)
Respective annotation Tensor that was randomly scaled with the same parameters
"""
input_shape = tf.shape(img_tensor)[0:2]
image_width, image_height = input_shape[0],input_shape[1]
crop_width, crop_height = output_shape[0],output_shape[1]
cropped_padded_img,cropped_padded_annotaion = control_flow_ops.cond(
tf.logical_and(
tf.greater_equal(image_height, crop_height),
tf.greater_equal(image_width, crop_width)),
fn1=lambda:crop_to_fixed_size(img_tensor,annotation_tensor,output_shape),
fn2=lambda:resize_to_fixed_size(img_tensor,annotation_tensor,output_shape,mask_out_num=mask_out_num))
return cropped_padded_img,cropped_padded_annotaion
def _crop(image, offset_height, offset_width, crop_height, crop_width):
"""Crops the given image using the provided offsets and sizes.
Note that the method doesn't assume we know the input image size but it does
assume we know the input image rank.
Args:
image: an image of shape [height, width, channels].
offset_height: a scalar tensor indicating the height offset.
offset_width: a scalar tensor indicating the width offset.
crop_height: the height of the cropped image.
crop_width: the width of the cropped image.
Returns:
the cropped (and resized) image.
Raises:
InvalidArgumentError: if the rank is not 3 or if the image dimensions are
less than the crop size.
"""
original_shape = tf.shape(image)
rank_assertion = tf.Assert(
tf.equal(tf.rank(image), 3),
['Rank of image must be equal to 3.'])
with tf.control_dependencies([rank_assertion]):
cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]])
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_height),
tf.greater_equal(original_shape[1], crop_width)),
['Crop size greater than the image size.'])
offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))
# Use tf.slice instead of crop_to_bounding box as it accepts tensors to
# define the crop size.
with tf.control_dependencies([size_assertion]):
image = tf.slice(image, offsets, cropped_shape)
return tf.reshape(image, cropped_shape)
def training_control(global_step, print_span, evaluation_span, max_step, name=None):
with tf.name_scope(name, "training_control"):
return {
"step": global_step,
"time_to_print": tf.equal(tf.mod(global_step, print_span), 0),
"time_to_evaluate": tf.equal(tf.mod(global_step, evaluation_span), 0),
"time_to_stop": tf.greater_equal(global_step, max_step),
}
def apply_stats(self, statsUpdates):
""" compute stats and update/apply the new stats to the running average
"""
def updateAccumStats():
if self._full_stats_init:
return tf.cond(tf.greater(self.sgd_step, self._cold_iter), lambda: tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)), tf.no_op)
else:
return tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter))
def updateRunningAvgStats(statsUpdates, fac_iter=1):
# return tf.cond(tf.greater_equal(self.factor_step,
# tf.convert_to_tensor(fac_iter)), lambda:
# tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op)
return tf.group(*self._apply_stats(statsUpdates))
if self._async_stats:
# asynchronous stats update
update_stats = self._apply_stats(statsUpdates)
queue = tf.FIFOQueue(1, [item.dtype for item in update_stats], shapes=[
item.get_shape() for item in update_stats])
enqueue_op = queue.enqueue(update_stats)
def dequeue_stats_op():
return queue.dequeue()
self.qr_stats = tf.train.QueueRunner(queue, [enqueue_op])
update_stats_op = tf.cond(tf.equal(queue.size(), tf.convert_to_tensor(
0)), tf.no_op, lambda: tf.group(*[dequeue_stats_op(), ]))
else:
# synchronous stats update
update_stats_op = tf.cond(tf.greater_equal(
self.stats_step, self._stats_accum_iter), lambda: updateRunningAvgStats(statsUpdates), updateAccumStats)
self._update_stats_op = update_stats_op
return update_stats_op