python类RunMetadata()的实例源码

session_manager.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 59 收藏 0 点赞 0 评论 0
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
        # Make sure there is no disagreement doing this.
        if options is not None:
            if options.trace_level != self.profiler_options.trace_level:  # pragma: no cover
                raise ValueError(
                    'In profiler session. Inconsistent trace '
                    'level from run call')  # pragma: no cover
            self.profiler_options.update(options)  # pragma: no cover

        self.local_run_metadata = tf.RunMetadata()
        output = super(TracerSession, self).run(
            fetches, feed_dict=feed_dict,
            options=self.profiler_options,
            run_metadata=self.local_run_metadata)

        trace_time = timeline.Timeline(self.local_run_metadata.step_stats)
        ctf = trace_time.generate_chrome_trace_format()
        with open(self._trace_filename(), 'w') as trace_file:
            trace_file.write(ctf)

        if self.each_time:
            self.counter += 1

        return output
profile.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf)
profile.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf)
util.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def traced_run(fetches):
  """Runs fetches, dumps timeline files in current directory."""
  global sess
  assert sess
  global timeline_counter
  run_metadata = tf.RunMetadata()

  root = os.getcwd()+"/data"
  from tensorflow.python.client import timeline

  results = sess.run(fetches,
                     options=run_options,
                     run_metadata=run_metadata);
  tl = timeline.Timeline(step_stats=run_metadata.step_stats)
  ctf = tl.generate_chrome_trace_format(show_memory=True,
                                          show_dataflow=False)
  open(root+"/timeline_%d.json"%(timeline_counter,), "w").write(ctf)
  open(root+"/stepstats_%d.pbtxt"%(timeline_counter,), "w").write(str(
    run_metadata.step_stats))
  timeline_counter+=1
  return results
kfac_cifar.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def sessrun(*args, **kwargs):
  sess = u.get_default_session()
  if not GLOBAL_PROFILE:
    return sess.run(*args, **kwargs)

  run_metadata = tf.RunMetadata()

  kwargs['options'] = full_trace_options
  kwargs['run_metadata'] = run_metadata
  result = sess.run(*args, **kwargs)
  first_entry = args[0]
  if isinstance(first_entry, list):
    if len(first_entry) == 0 and len(args) == 1:
      return None
    first_entry = first_entry[0]
  name = first_entry.name
  name = name.replace('/', '-')

  tl = timeline.Timeline(run_metadata.step_stats)
  ctf = tl.generate_chrome_trace_format()
  with open('timelines/%s.json'%(name,), 'w') as f:
    f.write(ctf)
  with open('timelines/%s.pbtxt'%(name,), 'w') as f:
    f.write(str(run_metadata))
  return result
gpu_svd_bench.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def traced_run(fetches):
    """Runs fetches, dumps timeline files in current directory."""

    from tensorflow.python.client import timeline

    global timeline_counter
    run_metadata = tf.RunMetadata()

    results = sess.run(fetches,
                       options=run_options,
                       run_metadata=run_metadata);
    tl = timeline.Timeline(step_stats=run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format(show_memory=True,
                                          show_dataflow=False)
    open("timeline_%d.json"%(timeline_counter,), "w").write(ctf)
    open("stepstats_%d.pbtxt"%(timeline_counter,), "w").write(str(
        run_metadata.step_stats))
    timeline_counter+=1
    return results
11-lstm-tensorflow-char-pat.py 文件源码 项目:albemarle 作者: SeanTater 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def train_it(sess, step=1):
    _pat_chars_i, _pat_lens = get_batch(__batch_size)
    inputs = {
        pat_chars_i: _pat_chars_i,
        pat_lens: _pat_lens}

    # Run optimization op (backprop)
    #run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    #run_metadata = tf.RunMetadata()
    #sess.run(optimizer, feed_dict=inputs, options=run_options, run_metadata=run_metadata)
    sess.run(optimizer, feed_dict=inputs)
    #with open('timeline.json', 'w') as f:
    #    f.write(
    #        timeline.Timeline(run_metadata.step_stats)
    #            .generate_chrome_trace_format())

    if step % display_step == 0:
        # Calculate batch loss
        cost_f = sess.run(cost, feed_dict=inputs)
        print ("Iter {}, cost= {:.6f}".format(
            str(step*__batch_size), cost_f))
trainer.py 文件源码 项目:dvae 作者: dojoteef 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def optimize(self, data, with_metrics=False, with_trace=False):
        """ Optimize a single batch """
        run_metadata = tf.RunMetadata() if with_trace else None
        trace = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) if with_trace else None

        _, metrics = self.run(
            self.training_operation, data,
            run_options=trace, run_metadata=run_metadata)

        if with_metrics:
            self.timer_update()
            steps, elapsed = self.elapsed()
            num_devices = len(self.towers)
            examples = steps * self.batch_size * num_devices
            print('Step {}, examples/sec {:.3f}, ms/batch {:.1f}'.format(
                self.global_step, examples / elapsed, 1000 * elapsed / num_devices))

            self.output_metrics(data, metrics)
            self.write_summaries(data)

        if with_trace:
            step = '{}/step{}'.format(self.name, self.global_step)
            self.summary_writer.add_run_metadata(run_metadata, step, global_step=self.global_step)
2-mnist-saving-restoring.py 文件源码 项目:npfl114 作者: ufal 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def train(self, images, labels, summaries=False, run_metadata=False):
        if (summaries or run_metadata) and not self.summary_writer:
            raise ValueError("Logdir is required for summaries or run_metadata.")

        args = {"feed_dict": {self.images: images, self.labels: labels}}
        targets = [self.training]
        if summaries:
            targets.append(self.summaries["training"])
        if run_metadata:
            args["options"] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            args["run_metadata"] = tf.RunMetadata()

        results = self.session.run(targets, **args)
        if summaries:
            self.summary_writer.add_summary(results[-1], self.training_step - 1)
        if run_metadata:
            self.summary_writer.add_run_metadata(args["run_metadata"], "step{:05}".format(self.training_step - 1))
1-mnist.py 文件源码 项目:npfl114 作者: ufal 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def train(self, images, labels, summaries=False, run_metadata=False):
        if (summaries or run_metadata) and not self.summary_writer:
            raise ValueError("Logdir is required for summaries or run_metadata.")

        args = {"feed_dict": {self.images: images, self.labels: labels}}
        targets = [self.training]
        if summaries:
            targets.append(self.summaries["training"])
        if run_metadata:
            args["options"] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            args["run_metadata"] = tf.RunMetadata()

        results = self.session.run(targets, **args)
        if summaries:
            self.summary_writer.add_summary(results[-1], self.training_step - 1)
        if run_metadata:
            self.summary_writer.add_run_metadata(args["run_metadata"], "step{:05}".format(self.training_step - 1))
plugin_event_accumulator.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def RunMetadata(self, tag):
    """Given a tag, return the associated session.run() metadata.

    Args:
      tag: A string tag associated with the event.

    Raises:
      ValueError: If the tag is not found.

    Returns:
      The metadata in form of `RunMetadata` proto.
    """
    if tag not in self._tagged_metadata:
      raise ValueError('There is no run metadata with this tag name')

    run_metadata = tf.RunMetadata()
    run_metadata.ParseFromString(self._tagged_metadata[tag])
    return run_metadata
profile.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def load_metadata(model_dir):
  """Loads RunMetadata, Graph and OpLog from files
  """
  # Import RunMetadata
  run_meta_path = os.path.join(model_dir, "metadata/run_meta")
  run_meta = tf.RunMetadata()
  if gfile.Exists(run_meta_path):
    with gfile.GFile(run_meta_path, "rb") as file:
      run_meta.MergeFromString(file.read())
    print("Loaded RunMetadata from {}".format(run_meta_path))
  else:
    print("RunMetadata does not exist a {}. Skipping.".format(run_meta_path))

  # Import Graph
  graph_def_path = os.path.join(model_dir, "graph.pbtxt")
  graph = tf.Graph()
  if gfile.Exists(graph_def_path):
    with graph.as_default():
      _register_function_ops(CUSTOM_OP_FUNCTIONS)
      graph_def = tf.GraphDef()
      with gfile.GFile(graph_def_path, "rb") as file:
        text_format.Parse(file.read(), graph_def)
      tf.import_graph_def(graph_def, name="")
      print("Loaded Graph from {}".format(graph_def_path))
  else:
    print("Graph does not exist a {}. Skipping.".format(graph_def_path))

  # Import OpLog
  op_log_path = os.path.join(model_dir, "metadata/tfprof_log")
  op_log = tfprof_log_pb2.OpLog()
  if gfile.Exists(op_log_path):
    with gfile.GFile(op_log_path, "rb") as file:
      op_log.MergeFromString(file.read())
      print("Loaded OpLog from {}".format(op_log_path))
  else:
    print("OpLog does not exist a {}. Skipping.".format(op_log_path))

  return run_meta, graph, op_log
vae.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def train(self, nIter, machine=None, summary_op=None):
        # Xh = self._validate(machine=machine, n=10)

        run_metadata = tf.RunMetadata()

        sv = tf.train.Supervisor(
            logdir=self.dirs['logdir'],
            # summary_writer=summary_writer,
            # summary_op=None,
            # is_chief=True,
            save_model_secs=300,
            global_step=self.opt['global_step'])


        # sess_config = configure_gpu_settings(args.gpu_cfg)
        sess_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True))

        with sv.managed_session(config=sess_config) as sess:
            sv.loop(60, self._refresh_status, (sess,))
            for step in range(self.arch['training']['max_iter']):
                if sv.should_stop():
                    break

                # main loop
                sess.run(self.opt['g'])

                # # output img
                # if step % 1000 == 0:
                #     xh = sess.run(Xh)
                #     with tf.gfile.GFile(
                #         os.path.join(
                #             self.dirs['logdir'],
                #             'img-anime-{:03d}k.png'.format(step // 1000),
                #         ),
                #         mode='wb',
                #     ) as fp:
                #         fp.write(xh)
gan.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def train(self, nIter, machine=None, summary_op=None):
        Xh = self._validate(machine=machine, n=10)

        run_metadata = tf.RunMetadata()

        sv = tf.train.Supervisor(
            logdir=self.dirs['logdir'],
            # summary_writer=summary_writer,
            # summary_op=None,
            # is_chief=True,
            # save_model_secs=600,
            global_step=self.opt['global_step'])


        # sess_config = configure_gpu_settings(args.gpu_cfg)
        sess_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True))

        with sv.managed_session(config=sess_config) as sess:
            sv.loop(60, self._refresh_status, (sess,))
            for step in range(self.arch['training']['max_iter']):
                if sv.should_stop():
                    break

                # main loop
                sess.run(self.opt['g'])

                # output img                
                if step % 1000 == 0:
                    xh = sess.run(Xh)
                    with tf.gfile.GFile(
                        os.path.join(
                            self.dirs['logdir'],
                            'img-anime-{:03d}k.png'.format(step // 1000),
                        ),
                        mode='wb',
                    ) as fp:
                        fp.write(xh)
profile.py 文件源码 项目:conv_seq2seq 作者: tobyyouup 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def load_metadata(model_dir):
  """Loads RunMetadata, Graph and OpLog from files
  """
  # Import RunMetadata
  run_meta_path = os.path.join(model_dir, "metadata/run_meta")
  run_meta = tf.RunMetadata()
  if gfile.Exists(run_meta_path):
    with gfile.GFile(run_meta_path, "rb") as file:
      run_meta.MergeFromString(file.read())
    print("Loaded RunMetadata from {}".format(run_meta_path))
  else:
    print("RunMetadata does not exist a {}. Skipping.".format(run_meta_path))

  # Import Graph
  graph_def_path = os.path.join(model_dir, "graph.pbtxt")
  graph = tf.Graph()
  if gfile.Exists(graph_def_path):
    with graph.as_default():
      _register_function_ops(CUSTOM_OP_FUNCTIONS)
      graph_def = tf.GraphDef()
      with gfile.GFile(graph_def_path, "rb") as file:
        text_format.Parse(file.read(), graph_def)
      tf.import_graph_def(graph_def, name="")
      print("Loaded Graph from {}".format(graph_def_path))
  else:
    print("Graph does not exist a {}. Skipping.".format(graph_def_path))

  # Import OpLog
  op_log_path = os.path.join(model_dir, "metadata/tfprof_log")
  op_log = tfprof_log_pb2.OpLog()
  if gfile.Exists(op_log_path):
    with gfile.GFile(op_log_path, "rb") as file:
      op_log.MergeFromString(file.read())
      print("Loaded OpLog from {}".format(op_log_path))
  else:
    print("OpLog does not exist a {}. Skipping.".format(op_log_path))

  return run_meta, graph, op_log
main.py 文件源码 项目:RNN-TrajModel 作者: wuhao5688 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, config_path = None):
    if config_path is not None:
      self.load(config_path)
    if self.time_trace:
      self.run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
      self.run_metadata = tf.RunMetadata()
    # set workspace
    self.workspace = os.path.join(self.workspace, self.dataset_name)
    self.dataset_path = os.path.join(self.workspace, self.file_name)
    self.map_path = os.path.join(self.workspace, "map/")
    self.__set_save_path()
    if self.eval_mode and self.save_ckpt:
      print("Warning, in evaluation mode, automatically set config.save_ckpt to False")
      self.save_ckpt = False
enqueue_many_test.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def run_op(op):
    start_time = time.time()
    print("%10.2f ms: starting op %s\n" % ((start_time-start_time0)*1000, op.name), flush=True, end='')

    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(op, options=options, run_metadata=run_metadata)
    end_time = time.time()
    print("%10.2f ms: ending op %s\n" % ((end_time-start_time0)*1000, op.name), flush=True, end='')
    run_metadatas.append(run_metadata)
enqueue_many_test_singlerun.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def run_op(op):
    start_time = time.time()
    print("%10.2f ms: starting op %s\n" % ((start_time-start_time0)*1000, op.name), flush=True, end='')

    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(op, options=options, run_metadata=run_metadata)
    end_time = time.time()
    print("%10.2f ms: ending op %s\n" % ((end_time-start_time0)*1000, op.name), flush=True, end='')
    run_metadatas.append(run_metadata)
double_memory_bug.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def sessrun(*args, **kwargs):
  """Helper to do sess.run and save run_metadata"""
  global sess, run_metadata

  run_metadata = tf.RunMetadata()

  kwargs['options'] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
  kwargs['run_metadata'] = run_metadata
  result = sess.run(*args, **kwargs)
  first_entry = args[0]
  # have to do this because sess.run(tensor) is same as sess.run([tensor]) 
  if isinstance(first_entry, list):
    if len(first_entry) == 0 and len(args) == 1:
      return None
    first_entry = first_entry[0]
async_adder.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def traced_run(fetches):
  """Runs fetches, dumps timeline files in current directory."""

  global timeline_counter
  run_metadata = tf.RunMetadata()

  config = load_config()
  log_fn = "%s-%s-%s"%(config.task_type, config.task_id, timeline_counter)
  sess = tf.get_default_session()

  root = os.getcwd()+"/data"
  os.system('mkdir -p '+root)

  from tensorflow.python.client import timeline

  results = sess.run(fetches,
                     options=run_options,
                     run_metadata=run_metadata);
  tl = timeline.Timeline(step_stats=run_metadata.step_stats)
  ctf = tl.generate_chrome_trace_format(show_memory=True,
                                          show_dataflow=False)
  open(root+"/timeline_%s.json"%(log_fn,), "w").write(ctf)
  open(root+"/stepstats_%s.pbtxt"%(log_fn,), "w").write(str(
    run_metadata.step_stats))
  timeline_counter+=1
  return results
investigation.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def run_shit():
    sess = tf.Session()
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(tf.initialize_all_variables())
    train_step_ = sess.run([train_step], options=run_options, run_metadata=run_metadata,
                )#feed_dict={x: [[2,3],[5,1]]})

    tl = timeline.Timeline(run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format()
    with open('o_100.json', 'w') as f:
        f.write(ctf)
profile.py 文件源码 项目:automatic-summarization 作者: mozilla 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_metadata(model_dir):
  """Loads RunMetadata, Graph and OpLog from files
  """
  # Import RunMetadata
  run_meta_path = os.path.join(model_dir, "metadata/run_meta")
  run_meta = tf.RunMetadata()
  if gfile.Exists(run_meta_path):
    with gfile.GFile(run_meta_path, "rb") as file:
      run_meta.MergeFromString(file.read())
    print("Loaded RunMetadata from {}".format(run_meta_path))
  else:
    print("RunMetadata does not exist a {}. Skipping.".format(run_meta_path))

  # Import Graph
  graph_def_path = os.path.join(model_dir, "graph.pbtxt")
  graph = tf.Graph()
  if gfile.Exists(graph_def_path):
    with graph.as_default():
      _register_function_ops(CUSTOM_OP_FUNCTIONS)
      graph_def = tf.GraphDef()
      with gfile.GFile(graph_def_path, "rb") as file:
        text_format.Parse(file.read(), graph_def)
      tf.import_graph_def(graph_def, name="")
      print("Loaded Graph from {}".format(graph_def_path))
  else:
    print("Graph does not exist a {}. Skipping.".format(graph_def_path))

  # Import OpLog
  op_log_path = os.path.join(model_dir, "metadata/tfprof_log")
  op_log = tfprof_log_pb2.OpLog()
  if gfile.Exists(op_log_path):
    with gfile.GFile(op_log_path, "rb") as file:
      op_log.MergeFromString(file.read())
      print("Loaded OpLog from {}".format(op_log_path))
  else:
    print("OpLog does not exist a {}. Skipping.".format(op_log_path))

  return run_meta, graph, op_log
4-mnist-using-contrib.py 文件源码 项目:npfl114 作者: ufal 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def train(self, images, labels):
        self.steps += 1
        feed_dict = {self.images: images, self.labels: labels}

        if self.steps == 1:
            metadata = tf.RunMetadata()
            self.session.run(self.training, feed_dict, options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata = metadata)
            self.summary_writer.add_run_metadata(metadata, 'step1')
        elif self.steps % 100 == 0:
            _, summary = self.session.run([self.training, self.summaries['training']], feed_dict)
            self.summary_writer.add_summary(summary, self.steps)
        else:
            self.session.run(self.training, feed_dict)
3-mnist-run-metadata-and-histograms.py 文件源码 项目:npfl114 作者: ufal 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def train(self, images, labels):
        self.steps += 1
        feed_dict = {self.images: images, self.labels: labels}

        if self.steps == 1:
            metadata = tf.RunMetadata()
            self.session.run(self.training, feed_dict, options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata = metadata)
            self.summary_writer.add_run_metadata(metadata, 'step1')
        elif self.steps % 100 == 0:
            _, summary = self.session.run([self.training, self.summaries['training']], feed_dict)
            self.summary_writer.add_summary(summary, self.steps)
        else:
            self.session.run(self.training, feed_dict)
debug_graphs_helper_test.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testExtractGatedGrpcTensorsFoundGatedGrpcOps(self):
    with tf.Session() as sess:
      z, run_options = self._createTestGraphAndRunOptions(sess, gated_grpc=True)

      sess.run(tf.global_variables_initializer())
      run_metadata = tf.RunMetadata()
      self.assertAllClose(
          [10.0], sess.run(z, options=run_options, run_metadata=run_metadata))

      graph_wrapper = debug_graphs_helper.DebugGraphWrapper(
          run_metadata.partition_graphs[0])
      gated_debug_ops = graph_wrapper.get_gated_grpc_tensors()

      # Verify that the op types are available.
      for item in gated_debug_ops:
        self.assertTrue(item[1])

      # Strip out the op types before further checks, because op type names can
      # change in the future (e.g., 'VariableV2' --> 'VariableV3').
      gated_debug_ops = [
          (item[0], item[2], item[3]) for item in gated_debug_ops]

      self.assertIn(('a', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('a/read', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('b', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('b/read', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('c', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('c/read', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('d', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('d/read', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('x', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('y', 0, 'DebugIdentity'), gated_debug_ops)
      self.assertIn(('z', 0, 'DebugIdentity'), gated_debug_ops)
debug_graphs_helper_test.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testGraphDefProperty(self):
    with tf.Session() as sess:
      z, run_options = self._createTestGraphAndRunOptions(sess, gated_grpc=True)

      sess.run(tf.global_variables_initializer())
      run_metadata = tf.RunMetadata()
      self.assertAllClose(
          [10.0], sess.run(z, options=run_options, run_metadata=run_metadata))

      graph_wrapper = debug_graphs_helper.DebugGraphWrapper(
          run_metadata.partition_graphs[0])
      self.assertProtoEquals(
          run_metadata.partition_graphs[0], graph_wrapper.graph_def)
debug_graphs_helper_test.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testExtractGatedGrpcTensorsFoundNoGatedGrpcOps(self):
    with tf.Session() as sess:
      z, run_options = self._createTestGraphAndRunOptions(sess,
                                                          gated_grpc=False)

      sess.run(tf.global_variables_initializer())
      run_metadata = tf.RunMetadata()
      self.assertAllClose(
          [10.0], sess.run(z, options=run_options, run_metadata=run_metadata))

      graph_wrapper = debug_graphs_helper.DebugGraphWrapper(
          run_metadata.partition_graphs[0])
      gated_debug_ops = graph_wrapper.get_gated_grpc_tensors()
      self.assertEqual([], gated_debug_ops)
graphs_plugin_test.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def generate_run(self, run_name, include_graph):
    """Create a run with a text summary, metadata, and optionally a graph."""
    tf.reset_default_graph()
    k1 = tf.constant(math.pi, name='k1')
    k2 = tf.constant(math.e, name='k2')
    result = (k1 ** k2) - k1
    expected = tf.constant(20.0, name='expected')
    error = tf.abs(result - expected, name='error')
    message_prefix_value = 'error ' * 1000
    true_length = len(message_prefix_value)
    assert true_length > self._MESSAGE_PREFIX_LENGTH_LOWER_BOUND, true_length
    message_prefix = tf.constant(message_prefix_value, name='message_prefix')
    error_message = tf.string_join([message_prefix,
                                    tf.as_string(error, name='error_string')],
                                   name='error_message')
    summary_message = tf.summary.text('summary_message', error_message)

    sess = tf.Session()
    writer = tf.summary.FileWriter(os.path.join(self.logdir, run_name))
    if include_graph:
      writer.add_graph(sess.graph)
    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    s = sess.run(summary_message, options=options, run_metadata=run_metadata)
    writer.add_summary(s)
    writer.add_run_metadata(run_metadata, self._METADATA_TAG)
    writer.close()
graphs_plugin_test.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_run_metadata(self):
    self.set_up_with_runs()
    (metadata_pbtxt, mime_type) = self.plugin.run_metadata_impl(
        self._RUN_WITH_GRAPH, self._METADATA_TAG)
    self.assertEqual(mime_type, 'text/x-protobuf')
    text_format.Parse(metadata_pbtxt, tf.RunMetadata())
    # If it parses, we're happy.
basic_train.py 文件源码 项目:master-thesis 作者: AndreasMadsen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def basic_train(loss_op, update_op,
                profile=0, save_dir='asset/unamed',
                **kwargs):
    profile_state = _ShouldProfile(profile)

    @stf.sg_train_func
    def train_func(sess, arg):
        profile_state.increment()

        if profile_state.should_profile():
            options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
        else:
            options = None
            run_metadata = None

        loss = sess.run([loss_op] + update_op,
                        options=options,
                        run_metadata=run_metadata)[0]

        if profile_state.should_profile():
            tl = tf_timeline.Timeline(run_metadata.step_stats)
            ctf = tl.generate_chrome_trace_format()
            with open(path.join(save_dir, 'timeline.json'), 'w') as fd:
                print(ctf, file=fd)

        return loss

    # run train function
    train_func(save_dir=save_dir, **kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号