python类TensorShape()的实例源码

ops.py 文件源码 项目:Tensormodels 作者: asheshjain399 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _two_element_tuple(int_or_tuple):
  """Converts `int_or_tuple` to height, width.

  Several of the functions that follow accept arguments as either
  a tuple of 2 integers or a single integer.  A single integer
  indicates that the 2 values of the tuple are the same.

  This functions normalizes the input value by always returning a tuple.

  Args:
    int_or_tuple: A list of 2 ints, a single int or a tf.TensorShape.

  Returns:
    A tuple with 2 values.

  Raises:
    ValueError: If `int_or_tuple` it not well formed.
  """
  if isinstance(int_or_tuple, (list, tuple)):
    if len(int_or_tuple) != 2:
      raise ValueError('Must be a list with 2 elements: %s' % int_or_tuple)
    return int(int_or_tuple[0]), int(int_or_tuple[1])
  if isinstance(int_or_tuple, int):
    return int(int_or_tuple), int(int_or_tuple)
  if isinstance(int_or_tuple, tf.TensorShape):
    if len(int_or_tuple) == 2:
      return int_or_tuple[0], int_or_tuple[1]
  raise ValueError('Must be an int, a list with 2 elements or a TensorShape of '
                   'length 2')
inception_score.py 文件源码 项目:SGAN 作者: YuhangSong 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _init_inception():
  global softmax
  if not os.path.exists(MODEL_DIR):
    os.makedirs(MODEL_DIR)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(MODEL_DIR, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (
          filename, float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
  with tf.gfile.FastGFile(os.path.join(
      MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    _ = tf.import_graph_def(graph_def, name='')
  # Works with an arbitrary minibatch size.
  with tf.Session() as sess:
    pool3 = sess.graph.get_tensor_by_name('pool_3:0')
    ops = pool3.graph.get_operations()
    for op_idx, op in enumerate(ops):
        for o in op.outputs:
            shape = o.get_shape()
            shape = [s.value for s in shape]
            new_shape = []
            for j, s in enumerate(shape):
                if s == 1 and j == 0:
                    new_shape.append(None)
                else:
                    new_shape.append(s)
            o._shape = tf.TensorShape(new_shape)
    w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
    logits = tf.matmul(tf.squeeze(pool3), w)
    softmax = tf.nn.softmax(logits)
inception_score.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _init_inception():
  global softmax
  if not os.path.exists(MODEL_DIR):
    os.makedirs(MODEL_DIR)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(MODEL_DIR, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (
          filename, float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
  with tf.gfile.FastGFile(os.path.join(
      MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    _ = tf.import_graph_def(graph_def, name='')
  # Works with an arbitrary minibatch size.
  with tf.Session() as sess:
    pool3 = sess.graph.get_tensor_by_name('pool_3:0')
    ops = pool3.graph.get_operations()
    for op_idx, op in enumerate(ops):
        for o in op.outputs:
            shape = o.get_shape()
            shape = [s.value for s in shape]
            new_shape = []
            for j, s in enumerate(shape):
                if s == 1 and j == 0:
                    new_shape.append(None)
                else:
                    new_shape.append(s)
            o._shape = tf.TensorShape(new_shape)
    w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
    logits = tf.matmul(tf.squeeze(pool3), w)
    softmax = tf.nn.softmax(logits)
inception_score.py 文件源码 项目:Unsupervised-Anomaly-Detection-with-Generative-Adversarial-Networks 作者: xtarx 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _init_inception():
  global softmax
  if not os.path.exists(MODEL_DIR):
    os.makedirs(MODEL_DIR)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(MODEL_DIR, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (
          filename, float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
  with tf.gfile.FastGFile(os.path.join(
      MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    _ = tf.import_graph_def(graph_def, name='')
  # Works with an arbitrary minibatch size.
  with tf.Session() as sess:
    pool3 = sess.graph.get_tensor_by_name('pool_3:0')
    ops = pool3.graph.get_operations()
    for op_idx, op in enumerate(ops):
        for o in op.outputs:
            shape = o.get_shape()
            shape = [s.value for s in shape]
            new_shape = []
            for j, s in enumerate(shape):
                if s == 1 and j == 0:
                    new_shape.append(None)
                else:
                    new_shape.append(s)
            o._shape = tf.TensorShape(new_shape)
    w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
    logits = tf.matmul(tf.squeeze(pool3), w)
    softmax = tf.nn.softmax(logits)
cwt.py 文件源码 项目:cwt-tensorflow 作者: nickgeoca 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def cwt(wav, widthCwt, wavelet):
    length = wav.shape[0]
    wav = tf.to_float(wav)
    wav = tf.reshape(wav, [1,length,1,1])

    # While loop functions
    def body(i, m): 
        v = conv1DWavelet(wav, i, wavelet)
        v = tf.reshape(v, [length, 1])

        m = tf.concat([m,v], 1)

        return [1 + i, m]

    def cond_(i, m):
        return tf.less_equal(i, widthCwt)

    # Initialize and run while loop
    emptyCwtMatrix = tf.zeros([length, 0], dtype='float32') 
    i = tf.constant(1)
    _, result = tf.while_loop(
            cond_,
            body,
            [i, emptyCwtMatrix],
            shape_invariants=[i.get_shape(), tf.TensorShape([length, None])],
            back_prop=False,
            parallel_iterations=1024,
            )
    result = tf.transpose(result)

    return result

# ------------------------------------------------------
#                 wavelets
inputs.py 文件源码 项目:tf_classification 作者: visipedia 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_distorted_inputs(original_image, bboxes, cfg, add_summaries):

    distorter = DistortedInputs(cfg, add_summaries)
    num_bboxes = tf.shape(bboxes)[0]
    distorted_inputs = tf.TensorArray(
        dtype=tf.float32,
        size=num_bboxes,
        element_shape=tf.TensorShape([1, cfg.INPUT_SIZE, cfg.INPUT_SIZE, 3])
    )

    if add_summaries:
        image_summaries = tf.TensorArray(
            dtype=tf.float32,
            size=4,
            element_shape=tf.TensorShape([1, cfg.INPUT_SIZE, cfg.INPUT_SIZE, 3])
        )
    else:
        image_summaries = tf.constant([])

    current_index = tf.constant(0, dtype=tf.int32)

    loop_vars = [original_image, bboxes, distorted_inputs, image_summaries, current_index]
    original_image, bboxes, distorted_inputs, image_summaries, current_index = tf.while_loop(
        cond=bbox_crop_loop_cond,
        body=distorter.apply,
        loop_vars=loop_vars,
        parallel_iterations=10, back_prop=False, swap_memory=False
    )

    distorted_inputs = distorted_inputs.concat()

    if add_summaries:
        tf.summary.image('0.original_image', image_summaries.read(0))
        tf.summary.image('1.image_with_random_crop', image_summaries.read(1))
        tf.summary.image('2.cropped_resized_image', image_summaries.read(2))
        tf.summary.image('3.final_distorted_image', image_summaries.read(3))


    return distorted_inputs
result_types_test.py 文件源码 项目:fold 作者: tensorflow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_tensor_shape(self):
    self.assertConverts(tf.TensorShape([]), tdt.TensorType(()))
    self.assertConverts(tf.TensorShape([1]), tdt.TensorType((1,)))
    self.assertConverts(tf.TensorShape([1, 2]), tdt.TensorType((1, 2)))
    self.assertConverts(tf.TensorShape([1, 2, 3]), tdt.TensorType((1, 2, 3)))
plan.py 文件源码 项目:fold 作者: tensorflow 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _create_queue(self, queue_id, ctor=tf.RandomShuffleQueue):
    # The enqueuing workers transform inputs into serialized loom
    # weaver messages, which are represented as strings.
    return ctor(
        capacity=self.queue_capacity or 4 * self.batch_size,
        min_after_dequeue=0, dtypes=[tf.string], shapes=[tf.TensorShape([])],
        shared_name='tensorflow_fold_plan_queue%s' % queue_id)
test_base.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _get_value_shape(self):
        if self._shape_fully_defined:
            return tf.TensorShape([5])
        return tf.TensorShape(None)
test_base.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _get_batch_shape(self):
        if self._shape_fully_defined:
            return tf.TensorShape([2, 3, 4])
        return tf.TensorShape([None, 3, 4])
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_value_shape(self):
        return tf.TensorShape([])
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _sample(self, n_samples):
        mean, std = self.mean, self.std
        if not self.is_reparameterized:
            mean = tf.stop_gradient(mean)
            std = tf.stop_gradient(std)
        shape = tf.concat([[n_samples], self.batch_shape], 0)
        samples = tf.random_normal(shape, dtype=self.dtype) * std + mean
        static_n_samples = n_samples if isinstance(n_samples, int) else None
        samples.set_shape(
            tf.TensorShape([static_n_samples]).concatenate(
                self.get_batch_shape()))
        return samples
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _get_value_shape(self):
        return tf.TensorShape([])
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _get_value_shape(self):
        return tf.TensorShape([])
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _sample(self, n_samples):
        p = tf.sigmoid(self.logits)
        shape = tf.concat([[n_samples], self.batch_shape], 0)
        alpha = tf.random_uniform(
            shape, minval=0, maxval=1, dtype=self.param_dtype)
        samples = tf.cast(tf.less(alpha, p), dtype=self.dtype)
        static_n_samples = n_samples if isinstance(n_samples, int) else None
        samples.set_shape(
            tf.TensorShape([static_n_samples]).concatenate(
                self.get_batch_shape()))
        return samples
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _get_value_shape(self):
        return tf.TensorShape([])
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_batch_shape(self):
        if self.logits.get_shape():
            return self.logits.get_shape()[:-1]
        return tf.TensorShape(None)
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _sample(self, n_samples):
        minval, maxval = self.minval, self.maxval
        if not self.is_reparameterized:
            minval = tf.stop_gradient(minval)
            maxval = tf.stop_gradient(maxval)
        shape = tf.concat([[n_samples], self.batch_shape], 0)
        samples = tf.random_uniform(shape, 0, 1, dtype=self.dtype) * \
            (maxval - minval) + minval
        static_n_samples = n_samples if isinstance(n_samples, int) else None
        samples.set_shape(
            tf.TensorShape([static_n_samples]).concatenate(
                self.get_batch_shape()))
        return samples
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_value_shape(self):
        return tf.TensorShape([])
univariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _get_value_shape(self):
        return tf.TensorShape([])


问题


面经


文章

微信
公众号

扫码关注公众号