def get_backend_version():
if keras.backend.backend() == "tensorflow":
return tf.__version__
if keras.backend.backend() == "theano":
return theano.__version__
if keras.backend.backend() == "cntk":
return cntk.__version__
return "undefined"
python类__version__()的实例源码
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
def main(unused_argv):
# Load the environment.
env = json.loads(os.environ.get("TF_CONFIG", "{}"))
# Load the cluster data from the environment.
cluster_data = env.get("cluster", None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
# Load the task data from the environment.
task_data = env.get("task", None) or {"type": "master", "index": 0}
task = type("TaskSpec", (object,), task_data)
# Logging the version.
logging.set_verbosity(tf.logging.INFO)
logging.info("%s: Tensorflow version: %s.",
task_as_string(task), tf.__version__)
# Dispatch to a master, a worker, or a parameter server.
if not cluster or task.type == "master" or task.type == "worker":
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
reader = get_reader()
model_exporter = export_model.ModelExporter(
frame_features=FLAGS.frame_features,
model=model,
reader=reader)
Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
FLAGS.log_device_placement, FLAGS.max_steps,
FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)
elif task.type == "ps":
ParameterServer(cluster, task).run()
else:
raise ValueError("%s: Invalid task_type: %s." %
(task_as_string(task), task.type))
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
_logger.info("Tensorflow Version: %s", str(tf.__version__))
tf_results = test_model(TfModel)
loom_results = test_model(LoomModel, False)
loom_results_proper = test_model(LoomModel, True)
if FLAGS.tree_lstm:
model_type = "GRU"
else:
model_type = "FC"
_logger.info("====================================================")
_logger.info("Num epochs: %d; repeats per epoch %d",
FLAGS.num_epochs, FLAGS.num_repeats)
_logger.info("Model type: %s, %s", model_type, FLAGS.tree_type)
_logger.info("Vector size: %d", FLAGS.vector_size)
_logger.info("Tree size: %d", FLAGS.tree_size)
print_results(tf_results, "TensorFlow")
print_results(loom_results, "Loom")
print_results(loom_results_proper, "Loom with random trees")
compare_results(tf_results, loom_results, "TensorFlow", "Loom")
compare_total_speedup(loom_results, tf_results[1])
_logger.info("Finished benchmarks.")
def main(_):
logging.info('Current tf version: %s', tf.__version__)
logging.info('Current tf git version: %s', tf.__git_version__)
run_training()
def _set_model(self, model):
import tensorflow as tf
import keras.backend.tensorflow_backend as KTF
self.model = model
self.sess = KTF.get_session()
if self.histogram_freq and self.merged is None:
for layer in self.model.layers:
for weight in layer.weights:
tf.histogram_summary(weight.name, weight)
if self.write_images:
w_img = tf.squeeze(weight)
shape = w_img.get_shape()
if len(shape) > 1 and shape[0] > shape[1]:
w_img = tf.transpose(w_img)
if len(shape) == 1:
w_img = tf.expand_dims(w_img, 0)
w_img = tf.expand_dims(tf.expand_dims(w_img, 0), -1)
tf.image_summary(weight.name, w_img)
if hasattr(layer, 'output'):
tf.histogram_summary('{}_out'.format(layer.name),
layer.output)
self.merged = tf.merge_all_summaries()
if self.write_graph:
if parse_version(tf.__version__) >= parse_version('0.8.0'):
self.writer = tf.train.SummaryWriter(self.log_dir,
self.sess.graph)
else:
self.writer = tf.train.SummaryWriter(self.log_dir,
self.sess.graph_def)
else:
self.writer = tf.train.SummaryWriter(self.log_dir)
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
def main(unused_argv):
# Load the environment.
env = json.loads(os.environ.get("TF_CONFIG", "{}"))
# Load the cluster data from the environment.
cluster_data = env.get("cluster", None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
# Load the task data from the environment.
task_data = env.get("task", None) or {"type": "master", "index": 0}
task = type("TaskSpec", (object,), task_data)
# Logging the version.
logging.set_verbosity(tf.logging.INFO)
logging.info("%s: Tensorflow version: %s.",
task_as_string(task), tf.__version__)
# Dispatch to a master, a worker, or a parameter server.
if not cluster or task.type == "master" or task.type == "worker":
model = find_class_by_name(FLAGS.model,
[models])()
reader = get_reader()
model_exporter = export_model.ModelExporter(
model=model,
reader=reader)
Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
FLAGS.log_device_placement, FLAGS.max_steps,
FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)
elif task.type == "ps":
ParameterServer(cluster, task).run()
else:
raise ValueError("%s: Invalid task_type: %s." %
(task_as_string(task), task.type))
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
def main(unused_argv):
# Load the environment.
env = json.loads(os.environ.get("TF_CONFIG", "{}"))
# Load the cluster data from the environment.
cluster_data = env.get("cluster", None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
# Load the task data from the environment.
task_data = env.get("task", None) or {"type": "master", "index": 0}
task = type("TaskSpec", (object,), task_data)
# Logging the version.
logging.set_verbosity(tf.logging.INFO)
logging.info("%s: Tensorflow version: %s.",
task_as_string(task), tf.__version__)
# Dispatch to a master, a worker, or a parameter server.
if not cluster or task.type == "master" or task.type == "worker":
model = find_class_by_name(FLAGS.model,
[cvd_models])()
reader = get_reader()
model_exporter = export_model.ModelExporter(
model=model,
reader=reader)
Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
FLAGS.log_device_placement, FLAGS.max_steps,
FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)
elif task.type == "ps":
ParameterServer(cluster, task).run()
else:
raise ValueError("%s: Invalid task_type: %s." %
(task_as_string(task), task.type))
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
def main(unused_argv):
# Load the environment.
env = json.loads(os.environ.get("TF_CONFIG", "{}"))
# Load the cluster data from the environment.
cluster_data = env.get("cluster", None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
# Load the task data from the environment.
task_data = env.get("task", None) or {"type": "master", "index": 0}
task = type("TaskSpec", (object,), task_data)
# Logging the version.
logging.set_verbosity(tf.logging.INFO)
logging.info("%s: Tensorflow version: %s.",
task_as_string(task), tf.__version__)
# Dispatch to a master, a worker, or a parameter server.
if not cluster or task.type == "master" or task.type == "worker":
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
reader = get_reader()
model_exporter = export_model.ModelExporter(
frame_features=FLAGS.frame_features,
model=model,
reader=reader)
Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
FLAGS.log_device_placement, FLAGS.max_steps,
FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)
elif task.type == "ps":
ParameterServer(cluster, task).run()
else:
raise ValueError("%s: Invalid task_type: %s." %
(task_as_string(task), task.type))
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
def main(unused_argv):
# Load the environment.
env = json.loads(os.environ.get("TF_CONFIG", "{}"))
# Load the cluster data from the environment.
cluster_data = env.get("cluster", None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
# Load the task data from the environment.
task_data = env.get("task", None) or {"type": "master", "index": 0}
task = type("TaskSpec", (object,), task_data)
# Logging the version.
logging.set_verbosity(tf.logging.INFO)
logging.info("%s: Tensorflow version: %s.",
task_as_string(task), tf.__version__)
# Dispatch to a master, a worker, or a parameter server.
if not cluster or task.type == "master" or task.type == "worker":
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
reader = get_reader()
model_exporter = export_model.ModelExporter(
frame_features=FLAGS.frame_features,
model=model,
reader=reader)
Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
FLAGS.log_device_placement, FLAGS.max_steps,
FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)
elif task.type == "ps":
ParameterServer(cluster, task).run()
else:
raise ValueError("%s: Invalid task_type: %s." %
(task_as_string(task), task.type))
def get_tensorflow_version():
try:
from tensorflow import __version__ as tf_version
return tf_version
except ImportError:
pass
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
def _assert_tensorflow_version():
# Fail with a clear error in case we are not using a compatible TF version.
major, minor, _ = tf.__version__.split('.')
if int(major) != 1 or int(minor) < 4:
raise RuntimeError(
'Tensorflow version >= 1.4, < 2 is required. Found (%s). Please '
'install the latest 1.x version from '
'https://github.com/tensorflow/tensorflow. ' % tf.__version__)
def __init__(self):
print("tensorflow version: ", tf.__version__)
tf.reset_default_graph()
self.encoder_vec_file = "./preprocessing/enc.vec"
self.decoder_vec_file = "./preprocessing/dec.vec"
self.encoder_vocabulary = "./preprocessing/enc.vocab"
self.decoder_vocabulary = "./preprocessing/dec.vocab"
self.dictFile = './word_dict.txt'
self.batch_size = 1
self.max_batches = 10000
self.show_epoch = 100
self.model_path = './model/'
# jieba????
jieba.load_userdict(self.dictFile)
self.model = dynamicSeq2seq(encoder_cell=LSTMCell(20),
decoder_cell=LSTMCell(40),
encoder_vocab_size=540,
decoder_vocab_size=1600,
embedding_size=20,
attention=True,
bidirectional=True,
debug=False,
time_major=True)
self.location = ["??", "??", "??", "??","??"]
self.user_info = {"__username__":"Stephen", "__location__":"??"}
self.robot_info = {"__robotname__":"JiJi"}
self.dec_vocab = {}
self.enc_vocab = {}
tag_location = ''
with open(self.encoder_vocabulary, "r") as enc_vocab_file:
for index, word in enumerate(enc_vocab_file.readlines()):
self.enc_vocab[word.strip()] = index
with open(self.decoder_vocabulary, "r") as dec_vocab_file:
for index, word in enumerate(dec_vocab_file.readlines()):
self.dec_vocab[index] = word.strip()
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
def main(unused_argv):
# Load the environment.
env = json.loads(os.environ.get("TF_CONFIG", "{}"))
# Load the cluster data from the environment.
cluster_data = env.get("cluster", None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
# Load the task data from the environment.
task_data = env.get("task", None) or {"type": "master", "index": 0}
task = type("TaskSpec", (object,), task_data)
# Logging the version.
logging.set_verbosity(tf.logging.INFO)
logging.info("%s: Tensorflow version: %s.",
task_as_string(task), tf.__version__)
# Dispatch to a master, a worker, or a parameter server.
if not cluster or task.type == "master" or task.type == "worker":
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
reader = get_reader()
model_exporter = export_model.ModelExporter(
frame_features=FLAGS.frame_features,
model=model,
reader=reader)
Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
FLAGS.log_device_placement, FLAGS.max_steps,
FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)
elif task.type == "ps":
ParameterServer(cluster, task).run()
else:
raise ValueError("%s: Invalid task_type: %s." %
(task_as_string(task), task.type))