python类__version__()的实例源码

run_benchmark.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_backend_version():
    if keras.backend.backend() == "tensorflow":
        return tf.__version__
    if keras.backend.backend() == "theano":
        return theano.__version__
    if keras.backend.backend() == "cntk":
        return cntk.__version__
    return "undefined"
eval.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate()
train.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def main(unused_argv):
  # Load the environment.
  env = json.loads(os.environ.get("TF_CONFIG", "{}"))

  # Load the cluster data from the environment.
  cluster_data = env.get("cluster", None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None

  # Load the task data from the environment.
  task_data = env.get("task", None) or {"type": "master", "index": 0}
  task = type("TaskSpec", (object,), task_data)

  # Logging the version.
  logging.set_verbosity(tf.logging.INFO)
  logging.info("%s: Tensorflow version: %s.",
               task_as_string(task), tf.__version__)

  # Dispatch to a master, a worker, or a parameter server.
  if not cluster or task.type == "master" or task.type == "worker":
    model = find_class_by_name(FLAGS.model,
        [frame_level_models, video_level_models])()

    reader = get_reader()

    model_exporter = export_model.ModelExporter(
        frame_features=FLAGS.frame_features,
        model=model,
        reader=reader)

    Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
            FLAGS.log_device_placement, FLAGS.max_steps,
            FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)

  elif task.type == "ps":
    ParameterServer(cluster, task).run()
  else:
    raise ValueError("%s: Invalid task_type: %s." %
                     (task_as_string(task), task.type))
iclr_2017_benchmark.py 文件源码 项目:fold 作者: tensorflow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def main(unused_argv):
  tf.logging.set_verbosity(tf.logging.INFO)
  _logger.info("Tensorflow Version: %s", str(tf.__version__))

  tf_results = test_model(TfModel)
  loom_results = test_model(LoomModel, False)
  loom_results_proper = test_model(LoomModel, True)

  if FLAGS.tree_lstm:
    model_type = "GRU"
  else:
    model_type = "FC"

  _logger.info("====================================================")
  _logger.info("Num epochs: %d; repeats per epoch %d",
               FLAGS.num_epochs, FLAGS.num_repeats)
  _logger.info("Model type: %s, %s", model_type, FLAGS.tree_type)
  _logger.info("Vector size: %d", FLAGS.vector_size)
  _logger.info("Tree size: %d", FLAGS.tree_size)

  print_results(tf_results, "TensorFlow")
  print_results(loom_results, "Loom")
  print_results(loom_results_proper, "Loom with random trees")

  compare_results(tf_results, loom_results, "TensorFlow", "Loom")
  compare_total_speedup(loom_results, tf_results[1])
  _logger.info("Finished benchmarks.")
task.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def main(_):
  logging.info('Current tf version: %s', tf.__version__)
  logging.info('Current tf git version: %s', tf.__git_version__)
  run_training()
callbacks.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _set_model(self, model):
        import tensorflow as tf
        import keras.backend.tensorflow_backend as KTF

        self.model = model
        self.sess = KTF.get_session()
        if self.histogram_freq and self.merged is None:
            for layer in self.model.layers:

                for weight in layer.weights:
                    tf.histogram_summary(weight.name, weight)

                    if self.write_images:
                        w_img = tf.squeeze(weight)

                        shape = w_img.get_shape()
                        if len(shape) > 1 and shape[0] > shape[1]:
                            w_img = tf.transpose(w_img)

                        if len(shape) == 1:
                            w_img = tf.expand_dims(w_img, 0)

                        w_img = tf.expand_dims(tf.expand_dims(w_img, 0), -1)

                        tf.image_summary(weight.name, w_img)

                if hasattr(layer, 'output'):
                    tf.histogram_summary('{}_out'.format(layer.name),
                                         layer.output)
        self.merged = tf.merge_all_summaries()
        if self.write_graph:
            if parse_version(tf.__version__) >= parse_version('0.8.0'):
                self.writer = tf.train.SummaryWriter(self.log_dir,
                                                     self.sess.graph)
            else:
                self.writer = tf.train.SummaryWriter(self.log_dir,
                                                     self.sess.graph_def)
        else:
            self.writer = tf.train.SummaryWriter(self.log_dir)
eval.py 文件源码 项目:mlc2017-online 作者: machine-learning-challenge 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate()
train.py 文件源码 项目:mlc2017-online 作者: machine-learning-challenge 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def main(unused_argv):
  # Load the environment.
  env = json.loads(os.environ.get("TF_CONFIG", "{}"))

  # Load the cluster data from the environment.
  cluster_data = env.get("cluster", None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None

  # Load the task data from the environment.
  task_data = env.get("task", None) or {"type": "master", "index": 0}
  task = type("TaskSpec", (object,), task_data)

  # Logging the version.
  logging.set_verbosity(tf.logging.INFO)
  logging.info("%s: Tensorflow version: %s.",
               task_as_string(task), tf.__version__)

  # Dispatch to a master, a worker, or a parameter server.
  if not cluster or task.type == "master" or task.type == "worker":
    model = find_class_by_name(FLAGS.model,
                               [models])()

    reader = get_reader()

    model_exporter = export_model.ModelExporter(
        model=model,
        reader=reader)

    Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
            FLAGS.log_device_placement, FLAGS.max_steps,
            FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)

  elif task.type == "ps":
    ParameterServer(cluster, task).run()
  else:
    raise ValueError("%s: Invalid task_type: %s." %
                     (task_as_string(task), task.type))
eval.py 文件源码 项目:mlc2017-online 作者: machine-learning-challenge 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate()
train.py 文件源码 项目:mlc2017-online 作者: machine-learning-challenge 项目源码 文件源码 阅读 55 收藏 0 点赞 0 评论 0
def main(unused_argv):
  # Load the environment.
  env = json.loads(os.environ.get("TF_CONFIG", "{}"))

  # Load the cluster data from the environment.
  cluster_data = env.get("cluster", None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None

  # Load the task data from the environment.
  task_data = env.get("task", None) or {"type": "master", "index": 0}
  task = type("TaskSpec", (object,), task_data)

  # Logging the version.
  logging.set_verbosity(tf.logging.INFO)
  logging.info("%s: Tensorflow version: %s.",
               task_as_string(task), tf.__version__)

  # Dispatch to a master, a worker, or a parameter server.
  if not cluster or task.type == "master" or task.type == "worker":
    model = find_class_by_name(FLAGS.model,
                               [cvd_models])()

    reader = get_reader()

    model_exporter = export_model.ModelExporter(
        model=model,
        reader=reader)

    Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
            FLAGS.log_device_placement, FLAGS.max_steps,
            FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)

  elif task.type == "ps":
    ParameterServer(cluster, task).run()
  else:
    raise ValueError("%s: Invalid task_type: %s." %
                     (task_as_string(task), task.type))
eval.py 文件源码 项目:youtube-8m 作者: google 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate()
train.py 文件源码 项目:youtube-8m 作者: google 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main(unused_argv):
  # Load the environment.
  env = json.loads(os.environ.get("TF_CONFIG", "{}"))

  # Load the cluster data from the environment.
  cluster_data = env.get("cluster", None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None

  # Load the task data from the environment.
  task_data = env.get("task", None) or {"type": "master", "index": 0}
  task = type("TaskSpec", (object,), task_data)

  # Logging the version.
  logging.set_verbosity(tf.logging.INFO)
  logging.info("%s: Tensorflow version: %s.",
               task_as_string(task), tf.__version__)

  # Dispatch to a master, a worker, or a parameter server.
  if not cluster or task.type == "master" or task.type == "worker":
    model = find_class_by_name(FLAGS.model,
        [frame_level_models, video_level_models])()

    reader = get_reader()

    model_exporter = export_model.ModelExporter(
        frame_features=FLAGS.frame_features,
        model=model,
        reader=reader)

    Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
            FLAGS.log_device_placement, FLAGS.max_steps,
            FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)

  elif task.type == "ps":
    ParameterServer(cluster, task).run()
  else:
    raise ValueError("%s: Invalid task_type: %s." %
                     (task_as_string(task), task.type))
eval.py 文件源码 项目:Video-Classification 作者: boyaolin 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate()
train.py 文件源码 项目:Video-Classification 作者: boyaolin 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def main(unused_argv):
  # Load the environment.
  env = json.loads(os.environ.get("TF_CONFIG", "{}"))

  # Load the cluster data from the environment.
  cluster_data = env.get("cluster", None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None

  # Load the task data from the environment.
  task_data = env.get("task", None) or {"type": "master", "index": 0}
  task = type("TaskSpec", (object,), task_data)

  # Logging the version.
  logging.set_verbosity(tf.logging.INFO)
  logging.info("%s: Tensorflow version: %s.",
               task_as_string(task), tf.__version__)

  # Dispatch to a master, a worker, or a parameter server.
  if not cluster or task.type == "master" or task.type == "worker":
    model = find_class_by_name(FLAGS.model,
        [frame_level_models, video_level_models])()

    reader = get_reader()

    model_exporter = export_model.ModelExporter(
        frame_features=FLAGS.frame_features,
        model=model,
        reader=reader)

    Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
            FLAGS.log_device_placement, FLAGS.max_steps,
            FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)

  elif task.type == "ps":
    ParameterServer(cluster, task).run()
  else:
    raise ValueError("%s: Invalid task_type: %s." %
                     (task_as_string(task), task.type))
experiments.py 文件源码 项目:luminoth 作者: tryolabs 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_tensorflow_version():
    try:
        from tensorflow import __version__ as tf_version
        return tf_version
    except ImportError:
        pass
eval.py 文件源码 项目:Youtube-8M-WILLOW 作者: antoine77340 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate()
impl.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _assert_tensorflow_version():
  # Fail with a clear error in case we are not using a compatible TF version.
  major, minor, _ = tf.__version__.split('.')
  if int(major) != 1 or int(minor) < 4:
    raise RuntimeError(
        'Tensorflow version >= 1.4, < 2 is required. Found (%s). Please '
        'install the latest 1.x version from '
        'https://github.com/tensorflow/tensorflow. ' % tf.__version__)
seq2seq.py 文件源码 项目:seq2seq_chatterbot 作者: StephenLee2016 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self):
        print("tensorflow version: ", tf.__version__)
        tf.reset_default_graph()

        self.encoder_vec_file = "./preprocessing/enc.vec"
        self.decoder_vec_file = "./preprocessing/dec.vec"
        self.encoder_vocabulary = "./preprocessing/enc.vocab"
        self.decoder_vocabulary = "./preprocessing/dec.vocab"
        self.dictFile = './word_dict.txt'
        self.batch_size = 1
        self.max_batches = 10000
        self.show_epoch = 100
        self.model_path = './model/'

        # jieba????
        jieba.load_userdict(self.dictFile)

        self.model = dynamicSeq2seq(encoder_cell=LSTMCell(20),
                                    decoder_cell=LSTMCell(40), 
                                    encoder_vocab_size=540,
                                    decoder_vocab_size=1600,
                                    embedding_size=20,
                                    attention=True,
                                    bidirectional=True,
                                    debug=False,
                                    time_major=True)
        self.location = ["??", "??", "??", "??","??"]
        self.user_info = {"__username__":"Stephen", "__location__":"??"}
        self.robot_info = {"__robotname__":"JiJi"}
        self.dec_vocab = {}
        self.enc_vocab = {}
        tag_location = ''
        with open(self.encoder_vocabulary, "r") as enc_vocab_file:
            for index, word in enumerate(enc_vocab_file.readlines()):
                self.enc_vocab[word.strip()] = index
        with open(self.decoder_vocabulary, "r") as dec_vocab_file:
            for index, word in enumerate(dec_vocab_file.readlines()):
                self.dec_vocab[index] = word.strip()
eval.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate()
train.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def main(unused_argv):
  # Load the environment.
  env = json.loads(os.environ.get("TF_CONFIG", "{}"))

  # Load the cluster data from the environment.
  cluster_data = env.get("cluster", None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None

  # Load the task data from the environment.
  task_data = env.get("task", None) or {"type": "master", "index": 0}
  task = type("TaskSpec", (object,), task_data)

  # Logging the version.
  logging.set_verbosity(tf.logging.INFO)
  logging.info("%s: Tensorflow version: %s.",
               task_as_string(task), tf.__version__)

  # Dispatch to a master, a worker, or a parameter server.
  if not cluster or task.type == "master" or task.type == "worker":
    model = find_class_by_name(FLAGS.model,
        [frame_level_models, video_level_models])()

    reader = get_reader()

    model_exporter = export_model.ModelExporter(
        frame_features=FLAGS.frame_features,
        model=model,
        reader=reader)

    Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
            FLAGS.log_device_placement, FLAGS.max_steps,
            FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)

  elif task.type == "ps":
    ParameterServer(cluster, task).run()
  else:
    raise ValueError("%s: Invalid task_type: %s." %
                     (task_as_string(task), task.type))


问题


面经


文章

微信
公众号

扫码关注公众号