python类map_fn()的实例源码

matching.py 文件源码 项目:paraphrase-id-tensorflow 作者: nelson-liu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def max_sentence_similarity(sentence_input, similarity_matrix):
    """
    Parameters
    ----------
    sentence_input: Tensor
        Tensor of shape (batch_size, num_sentence_words, rnn_hidden_dim).

    similarity_matrix: Tensor
        Tensor of shape (batch_size, num_sentence_words, num_sentence_words).
    """
    # Shape: (batch_size, passage_len)
    def single_instance(inputs):
        single_sentence = inputs[0]
        argmax_index = inputs[1]
        # Shape: (num_sentence_words, rnn_hidden_dim)
        return tf.gather(single_sentence, argmax_index)

    question_index = tf.arg_max(similarity_matrix, 2)
    elems = (sentence_input, question_index)
    # Shape: (batch_size, num_sentence_words, rnn_hidden_dim)
    return tf.map_fn(single_instance, elems, dtype="float")
export_model.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
export_model.py 文件源码 项目:youtube-8m 作者: google 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
export_model.py 文件源码 项目:Video-Classification 作者: boyaolin 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
rcnn_proposal_test.py 文件源码 项目:luminoth 作者: tryolabs 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_bbox_pred(self, proposed_boxes, gt_boxes_per_class):
        """Computes valid bbox_pred from proposals and gt_boxes for each class.

        Args:
            proposed_boxes: Tensor with shape (num_proposals, 5).
            gt_boxes_per_class: Tensor holding the ground truth boxes for each
                class. Has shape (num_classes, num_gt_boxes_per_class, 4).

        Returns:
            A tensor with shape (num_proposals, num_classes * 4), holding the
            correct bbox_preds.
        """

        def bbox_encode(gt_boxes):
            return encode(
                proposed_boxes, gt_boxes
            )
        bbox_pred_tensor = tf.map_fn(
            bbox_encode, gt_boxes_per_class,
            dtype=tf.float32
        )
        # We need to explicitly unstack the tensor so that tf.concat works
        # properly.
        bbox_pred_list = tf.unstack(bbox_pred_tensor)
        return tf.concat(bbox_pred_list, 1)
layers.py 文件源码 项目:aboleth 作者: data61 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _build(self, X):
        """Build the graph of this layer."""
        n_samples, input_dim = self._get_X_dims(X)
        W_shape, _ = self._weight_shapes(self.n_categories)
        n_batch = tf.shape(X)[1]

        # Layer weights
        self.pW = _make_prior(self.std, self.pW, W_shape)
        self.qW = _make_posterior(self.std, self.qW, W_shape, self.full)

        # Index into the relevant weights rather than using sparse matmul
        Wsamples = _sample_W(self.qW, n_samples)
        features = tf.map_fn(lambda wx: tf.gather(*wx, axis=0), (Wsamples, X),
                             dtype=Wsamples.dtype)

        # Now concatenate the resulting features on the last axis
        f_dims = int(np.prod(features.shape[2:]))  # need this for placeholders
        Net = tf.reshape(features, [n_samples, n_batch, f_dims])

        # Regularizers
        KL = kl_sum(self.qW, self.pW)

        return Net, KL
layers.py 文件源码 项目:aboleth 作者: data61 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _build(self, X):
        """Build the graph of this layer."""
        n_samples, input_shape = self._get_X_dims(X)
        Wdim = tuple(input_shape) + (self.output_dim,)

        W = tf.Variable(tf.random_normal(shape=Wdim, seed=next(seedgen)),
                        name="W_map")

        # We don't want to copy tf.Variable W so map over X
        Net = tf.map_fn(lambda x: tf.matmul(x, W), X)

        # Regularizers
        penalty = self.l2 * tf.nn.l2_loss(W) + self.l1 * _l1_loss(W)

        # Optional Bias
        if self.use_bias is True:
            b = tf.Variable(tf.random_normal(shape=(1, self.output_dim),
                                             seed=next(seedgen)), name="b_map")
            Net += b
            penalty += self.l2 * tf.nn.l2_loss(b) + self.l1 * _l1_loss(b)

        return Net, penalty
playground.py 文件源码 项目:densecap-tensorflow 作者: rampage644 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def run(proposals, gt, device='/cpu:0'):

    with tf.device(device):
        proposals = tf.expand_dims(proposals, axis=1)
        proposals = tf.tile(proposals, [1, M, 1])

        gt = tf.expand_dims(gt, axis=0)
        gt = tf.tile(gt, [N, 1, 1])

        proposals = tf.reshape(proposals, (N*M, d))
        gt = tf.reshape(gt, (N*M, d))

        # shape is N*M x 1
        iou_metric = tf.map_fn(model.iou, tf.stack([proposals, gt], axis=1))
        iou_metric = tf.reshape(iou_metric, [N, M])

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(iou_metric)

# result is 2min48s
export_model.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
export_model.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
export_model.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
modules.py 文件源码 项目:DaNet-Tensorflow 作者: khaotik 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __call__(self, s_embed, s_src_pwr, s_mix_pwr, s_embed_flat=None):
        if s_embed_flat is None:
            s_embed_flat = tf.reshape(
                s_embed,
                [hparams.BATCH_SIZE, -1, hparams.EMBED_SIZE])
        with tf.variable_scope(self.name):
            s_src_assignment = tf.argmax(s_src_pwr, axis=1)
            s_indices = tf.reshape(
                s_src_assignment,
                [hparams.BATCH_SIZE, -1])
            fn_segmean = lambda _: tf.unsorted_segment_sum(
                _[0], _[1], hparams.MAX_N_SIGNAL)
            s_attractors = tf.map_fn(
                fn_segmean, (s_embed_flat, s_indices), hparams.FLOATX)
            s_attractors_wgt = tf.map_fn(
                fn_segmean, (tf.ones_like(s_embed_flat), s_indices),
                hparams.FLOATX)
            s_attractors /= (s_attractors_wgt + 1.)

        if hparams.DEBUG:
            self.debug_fetches = dict()
        # float[B, C, E]
        return s_attractors
video_input.py 文件源码 项目:tensorflow_video_classification_LSTM 作者: frankgu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, config, data):
    self.batch_size = batch_size = config['batch_size']
    self.num_steps  = num_steps = config['num_steps']
    self.epoch_size = (data.num_examples_per_epoch() // batch_size) - 1
    # input_data size: [batch_size, num_steps]
    # targets size: [batch_size]
    self.input_data, self.targets, self.filenames = distorted_inputs(
      data, config)

    # Data preprocessing: input_data
    #  string tensor [batch_size, num_steps] =>
    #    num_steps * [batch_size, height*width*channels]
    self.input_data = tf.map_fn(
      decode_video, self.input_data, dtype=tf.float32)
    self.input_data = tf.reshape(
      self.input_data, [batch_size, num_steps, -1])
    self.input_data = [tf.squeeze(input_step, [1])
               for input_step in tf.split(self.input_data, num_steps, 1)]
tensor_ops.py 文件源码 项目:hart 作者: akosiorek 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def bbox_to_mask(bbox, region_size, output_size, dtype=tf.float32):
    """Creates a binary mask of size `region_size` where rectangle given by
    `bbox` is filled with ones and the rest is zeros. Finally, the binary mask
    is resized to `output_size` with bilinear interpolation.

    :param bbox: tensor of shape (..., 4)
    :param region_size: tensor of shape (..., 2)
    :param output_size: 2-tuple of ints
    :param dtype: tf.dtype
    :return: a tensor of shape = (..., output_size)
    """
    shape = tf.concat(axis=0, values=(tf.shape(bbox)[:-1], output_size))
    bbox = tf.reshape(bbox, (-1, 4))
    region_size = tf.reshape(region_size, (-1, 2))

    def create_mask(args):
        yy, region_size = args
        return _bbox_to_mask_fixed_size(yy, region_size, output_size, dtype)

    mask = tf.map_fn(create_mask, (bbox, region_size), dtype=dtype)
    return tf.reshape(mask, shape)
misc.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def vec_to_tri(vectors, N):
    """
    Takes a D x M tensor `vectors' and maps it to a D x matrix_size X matrix_sizetensor
    where the where the lower triangle of each matrix_size x matrix_size matrix is
    constructed by unpacking each M-vector.

    Native TensorFlow version of Custom Op by Mark van der Wilk.

    def int_shape(x):
        return list(map(int, x.get_shape()))

    D, M = int_shape(vectors)
    N = int( np.floor( 0.5 * np.sqrt( M * 8. + 1. ) - 0.5 ) )
    # Check M is a valid triangle number
    assert((matrix * (N + 1)) == (2 * M))
    """
    indices = list(zip(*np.tril_indices(N)))
    indices = tf.constant([list(i) for i in indices], dtype=tf.int64)

    def vec_to_tri_vector(vector):
        return tf.scatter_nd(indices=indices, shape=[N, N], updates=vector)

    return tf.map_fn(vec_to_tri_vector, vectors)
utils.py 文件源码 项目:sdp 作者: tansey 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def mvn_mix_log_probs(samples, q, ndims, num_components=3):
    '''Calculate the log probabilities of a MVN mixture model.
    Assumes q is [batchsize,numparams]'''
    pi = tf.nn.softmax(q[:,:num_components])
    mu = tf.reshape(q[:,num_components:num_components*(1+ndims)], [-1, num_components, ndims])
    chol_q = q[:,num_components*(1+ndims):]
    chol = unpack_cholesky(chol_q, ndims, num_components)
    log_probs = []
    for c in xrange(num_components):
        packed_params = tf.concat(axis=1, values=[mu[:,c,:],tf.reshape(chol[:,c,:,:], [-1,ndims*ndims]), samples])
        log_p = tf.map_fn(lambda x: chol_mvn(x[:ndims], tf.reshape(x[ndims:ndims*(1+ndims)],[ndims,ndims])).log_prob(x[ndims*(1+ndims):]), packed_params)
        log_probs.append(log_p)
    log_probs = tf.transpose(tf.reshape(tf.concat(axis=0, values=log_probs), [num_components, -1]))
    log_probs = tf.log(pi)+log_probs
    return log_sum_exp(log_probs)

#######################################################################

################ PixelCNN++ utils #####################################
# Some code below taken from OpenAI PixelCNN++ implementation: https://github.com/openai/pixel-cnn
export_model.py 文件源码 项目:Youtube8mdataset_kagglechallenge 作者: jasonlee27 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
lookup.py 文件源码 项目:classify 作者: kupospelov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_embedding_graph(self):
        data = tf.placeholder(tf.int32, shape=[None, None], name='data')
        embeddings = tf.constant(
                self.indexer.vectors, tf.float32, name='embeddings')

        vectors = tf.map_fn(
                lambda d: tf.nn.embedding_lookup(embeddings, d),
                data,
                tf.float32)

        padded = tf.pad(
                vectors,
                [[0, 0], [0, self.max_length - tf.shape(vectors)[1]], [0, 0]])

        return {
            'padded': padded,
            'data': data
        }
detnet.py 文件源码 项目:social-scene-understanding 作者: cvlab-epfl 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compute_detections_batch(segs, boxes, num_keep,
                             seg_threshold=0.2,
                             sigma=5e-3, step=0.2, num_iters=20,
                             dist_threshold=20.0,
                             iou_threshold=0.5,
                             nms_kind='greedy'):

  if nms_kind == 'greedy':
    # TODO: rename it to CRF?
    _compute_frame = (lambda x: compute_detections_greedy(x[0], x[1], num_keep,
                                                          seg_threshold,
                                                          sigma, step, num_iters,
                                                          dist_threshold))
  elif nms_kind == 'nms':
    _compute_frame = (lambda x: compute_detections_nms(x[0], x[1], num_keep,
                                                       seg_threshold,
                                                       iou_threshold))
  boxes, confidence = tf.map_fn(_compute_frame, (segs, boxes))
  return boxes, confidence
builder.py 文件源码 项目:KBOPrediction 作者: riceluxs1t 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_accuracy(self, x_test_home, x_test_away, y_test, keep_prop=1.0):
        """
        The predictions from x_test_home and x_test_away are mapped to 1 or 0 depending on whether the
        home team wins or not. Then it is compared with y_test which is the ground truth.
        """
        predict = tf.map_fn(
            lambda x: x[0] > x[1],
            self.sess.run(
                self.hypothesis, 
                feed_dict={
                self.X_home: x_test_home, 
                self.X_away: x_test_away, 
                self.Y: y_test, 
                self.keep_prob: keep_prop}
            ), 
            dtype=bool)

        real = tf.map_fn(
            lambda x: x[0] > x[1],
            y_test,
            dtype=bool)

        return self.sess.run(
            tf.divide(
                tf.reduce_sum(tf.cast(tf.equal(predict, real), dtype=tf.int32)), len(y_test)))
export_model.py 文件源码 项目:youtube 作者: taufikxu 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
tf_tree_lstm.py 文件源码 项目:RecursiveNN 作者: sapruash 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def process_leafs(self,emb):

        with tf.variable_scope("Composition",reuse=True):
            cU = tf.get_variable("cU",[self.emb_dim,2*self.hidden_dim])
            cb = tf.get_variable("cb",[4*self.hidden_dim])
            b = tf.slice(cb,[0],[2*self.hidden_dim])
            def _recurseleaf(x):

                concat_uo = tf.matmul(tf.expand_dims(x,0),cU) + b
                u,o = tf.split(1,2,concat_uo)
                o=tf.nn.sigmoid(o)
                u=tf.nn.tanh(u)

                c = u#tf.squeeze(u)
                h = o * tf.nn.tanh(c)


                hc = tf.concat(1,[h,c])
                hc=tf.squeeze(hc)
                return hc

        hc = tf.map_fn(_recurseleaf,emb)
        return hc
tf_tree_lstm.py 文件源码 项目:RecursiveNN 作者: sapruash 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def process_leafs(self,emb):

        with tf.variable_scope("Composition",reuse=True):
            cUW = tf.get_variable("cUW")
            cb = tf.get_variable("cb")
            U = tf.slice(cUW,[0,0],[self.emb_dim,2*self.hidden_dim])
            b = tf.slice(cb,[0],[2*self.hidden_dim])
            def _recurseleaf(x):

                concat_uo = tf.matmul(tf.expand_dims(x,0),U) + b
                u,o = tf.split(1,2,concat_uo)
                o=tf.nn.sigmoid(o)
                u=tf.nn.tanh(u)

                c = u#tf.squeeze(u)
                h = o * tf.nn.tanh(c)


                hc = tf.concat(1,[h,c])
                hc=tf.squeeze(hc)
                return hc

            hc = tf.map_fn(_recurseleaf,emb)
            return hc
new_data_mlp.py 文件源码 项目:NVDM-For-Document-Classification 作者: cryanzpj 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def thres_search(data,label,n):
    res = []
    for i in range(n):
        n_label = tf.cast(tf.reduce_sum(label[i]),tf.int32)
        temp = tf.mul(data[i],label[i])
        temp = tf.reshape(tf.nn.top_k(temp,n_label +1).values,[1,1,-1,1])
        thres = tf.reshape(tf.contrib.layers.avg_pool2d(temp,[1,2],[1,1]),[-1,1])
        predicts = tf.map_fn(lambda x: tf.cast(tf.greater_equal(data[i],x),tf.float32),thres)
        f1_scores = tf.map_fn(lambda x: f1(x,label[i]),predicts)
        thres_opt = thres[tf.cast(tf.arg_max(f1_scores,0),tf.int32)]
        res.append(thres_opt)
        # R = tf.map_fn(lambda x: tf.contrib.metrics.streaming_recall(x,label[i])[0],predicts)
        # P = tf.map_fn(lambda x: tf.contrib.metrics.streaming_precision(x,label[i])[0],predicts)
        #thres_opt = thres[np.argsort(map(lambda x:  metrics.f1_score(x,sess.run(label[i]),average = "macro") ,predicts))[-1]]

    return tf.reshape(res,[-1])
question_encoding.py 文件源码 项目:Constituent-Centric-Neural-Architecture-for-Reading-Comprehension 作者: shrshore 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def process_leafs(self,emb):
        #emb: [num_leaves, emd_dim]    
        with tf.variable_scope("btp_Composition",reuse=True):
            cU = tf.get_variable("cU",[self.emb_dim,2*self.hidden_dim])
            cb = tf.get_variable("cb",[4*self.hidden_dim])
            b = tf.slice(cb,[0],[2*self.hidden_dim])
            #?????????input gate??orget gate,??????utput gate ??nput value
            #??b??? 2*hidde_dim ?           
            #x [emb_dim]
            def _recurseleaf(x):
                #[1, emb_dim], [emb_dim, 2*self.hidden_dim]
                concat_uo = tf.matmul(tf.expand_dims(x,0),cU) + b
                #??oncat_uo????
                #[1*hidden_dim] [1*hidden_dim]
                u,o = tf.split(axis=1,num_or_size_splits=2,value=concat_uo)
                o=tf.nn.sigmoid(o)
                u=tf.nn.tanh(u)
                c = u#tf.squeeze(u)
                h = o * tf.nn.tanh(c)
                hc = tf.concat(axis=1,values=[h,c])
                hc=tf.squeeze(hc)
                return hc
        hc = tf.map_fn(_recurseleaf,emb)
        #hc [num_leaves, 2*hidden_dim]
        return hc
context_encoding.py 文件源码 项目:Constituent-Centric-Neural-Architecture-for-Reading-Comprehension 作者: shrshore 项目源码 文件源码 阅读 85 收藏 0 点赞 0 评论 0
def process_leafs(self,emb):
        #emb: [num_leaves, emd_dim]    
        with tf.variable_scope("btp_Composition",reuse=True):
            cU = tf.get_variable("cU",[self.emb_dim,2*self.hidden_dim])
            cb = tf.get_variable("cb",[4*self.hidden_dim])
            b = tf.slice(cb,[0],[2*self.hidden_dim])
            #??????input gate?forget gate,????output gate ?Input value
            def _recurseleaf(x):
                #[1, emb_dim], [emb_dim, 2*self.hidden_dim]
                concat_uo = tf.matmul(tf.expand_dims(x,0),cU) + b
                #?concat_uo???
                #[1*hidden_dim] [1*hidden_dim]
                u,o = tf.split(axis=1,num_or_size_splits=2,value=concat_uo)
                o=tf.nn.sigmoid(o)
                u=tf.nn.tanh(u)
                c = u#tf.squeeze(u)
                h = o * tf.nn.tanh(c)
                hc = tf.concat(axis=1,values=[h,c])
                hc=tf.squeeze(hc)
                return hc
        hc = tf.map_fn(_recurseleaf,emb)
        #hc [num_leaves, 2*hidden_dim]
        return hc
matching.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def max_sentence_similarity(sentence_input, similarity_matrix):
    """
    Parameters
    ----------
    sentence_input: Tensor
        Tensor of shape (batch_size, num_sentence_words, rnn_hidden_dim).

    similarity_matrix: Tensor
        Tensor of shape (batch_size, num_sentence_words, num_sentence_words).
    """
    # Shape: (batch_size, passage_len)
    def single_instance(inputs):
        single_sentence = inputs[0]
        argmax_index = inputs[1]
        # Shape: (num_sentence_words, rnn_hidden_dim)
        return tf.gather(single_sentence, argmax_index)

    question_index = tf.arg_max(similarity_matrix, 2)
    elems = (sentence_input, question_index)
    # Shape: (batch_size, num_sentence_words, rnn_hidden_dim)
    return tf.map_fn(single_instance, elems, dtype="float")
genericDataSetLoader.py 文件源码 项目:Melanoma-Cancer-Detection-V1 作者: vgupta-ai 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def standardizeImages(self):
        print "Standardizing Images..."
        self.trainingDataXStandardized = []
        self.testingDataXStandardized = []
        with tf.Session() as sess:
            for i in range(self.trainingDataX.shape[0]):
                print str(i)+"/"+str(self.trainingDataX.shape[0])
                self.trainingDataXStandardized.append(tf.image.per_image_standardization(self.trainingDataX[i]).eval())

            for i in range(self.testingDataX.shape[0]):
                print str(i)+"/"+str(self.testingDataX.shape[0])
                self.testingDataXStandardized.append(tf.image.per_image_standardization(self.testingDataX[i]).eval())
        #self.trainingDataX = tf.map_fn(lambda img:tf.image.per_image_standardization(img), self.trainingDataX, dtype=tf.float32)
        #self.testingDataX = tf.map_fn(lambda img:tf.image.per_image_standardization(img), self.testingDataX, dtype=tf.float32)
        #print self.trainingDataXStandardized[0]
        self.trainingDataX = np.array(self.trainingDataXStandardized)
        self.testingDataX = np.array(self.testingDataXStandardized)
        print self.testingDataX.shape
        print self.trainingDataX.shape
        #with tf.Session() as sess:
        #    self.trainingDataX = self.trainingDataX.eval()
        #    self.testingDataX = self.testingDataX.eval()
        print "Images standardized...Saving them..."
        self.__save("preparedDataStandardized.pkl")
genericDataSetLoader.py 文件源码 项目:Melanoma-Cancer-Detection-V1 作者: vgupta-ai 项目源码 文件源码 阅读 63 收藏 0 点赞 0 评论 0
def _createBatchAndStandardize(self,imageDataArray,batchSize):
        i = 0
        standardizedImagesBatch = None
        standardizedImages = None
        totalNumImages = imageDataArray.shape[0]
        print "Total Number of images:"+str(totalNumImages)
        while i<totalNumImages:
            minIndx = i
            maxIndx = min(imageDataArray.shape[0],i+batchSize)
            print str(i)+"/"+str(imageDataArray.shape[0])
            i = i + batchSize
            print i
            standardizedImagesBatch = tf.map_fn(lambda img:tf.image.per_image_standardization(img), imageDataArray[minIndx:maxIndx], dtype=tf.float32)
            if standardizedImages is None:
                standardizedImages = standardizedImagesBatch.eval()
            else:
                standardizedImages = np.vstack((standardizedImages,standardizedImagesBatch.eval()))
        return standardizedImages
readers.py 文件源码 项目:tutorial_mnist 作者: machine-learning-challenge 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def prepare_serialized_examples(self, serialized_examples):
    feature_map = {
        'image_raw': tf.FixedLenFeature([784], tf.int64),
        'label': tf.FixedLenFeature([], tf.int64),
    }
    features = tf.parse_example(serialized_examples, features=feature_map)

    images = tf.cast(features["image_raw"], tf.float32) * (1. / 255)
    labels = tf.cast(features['label'], tf.int32)

    def dense_to_one_hot(label_batch, num_classes):
      one_hot = tf.map_fn(lambda x : tf.cast(slim.one_hot_encoding(x, num_classes), tf.int32), label_batch)
      one_hot = tf.reshape(one_hot, [-1, num_classes])
      return one_hot

    labels = dense_to_one_hot(labels, 10)
    return images, labels


问题


面经


文章

微信
公众号

扫码关注公众号