python类get_default_session()的实例源码

save_weights.py 文件源码 项目:tf_face 作者: ZhijianChan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def main(args):
    if args.meta_file == None or not os.path.exists(args.meta_file):
        print("Invalid tensorflow meta-graph file:", args.meta_file)
        return

    gpu_options = tf.GPUOptions(allow_growth=True)
    sess = tf.Session(config=tf.ConfigProto(
        gpu_options=gpu_options,
        log_device_placement=False,
        allow_soft_placement=True))
    with sess.as_default():
        # ---- load pretrained parameters ---- #
        saver = tf.train.import_meta_graph(args.meta_file, clear_devices=True)
        saver.restore(tf.get_default_session(), args.ckpt_file)
        pretrained = {}
        var_ = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES)
        print("total:", len(var_))
        for v in var_:
            print("process:", v.name)
            # [notice: the name of parameter is like 'Resnet/conv2d/bias:0',
            #  here we should remove the prefix name, and get '/conv2d/bias:0']
            v_name = v.name
            pretrained[v_name] = sess.run([v])
    np.save(args.save_path, pretrained)
    print("done:", len(pretrained.keys()))
facenet.py 文件源码 项目:icyface_api 作者: bupticybee 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def load_model(model):
    # Check if the model is a model directory (containing a metagraph and a checkpoint file)
    #  or if it is a protobuf file with a frozen graph
    model_exp = os.path.expanduser(model)
    if (os.path.isfile(model_exp)):
        print('Model filename: %s' % model_exp)
        with gfile.FastGFile(model_exp,'rb') as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
            tf.import_graph_def(graph_def, name='')
    else:
        print('Model directory: %s' % model_exp)
        meta_file, ckpt_file = get_model_filenames(model_exp)

        print('Metagraph file: %s' % meta_file)
        print('Checkpoint file: %s' % ckpt_file)

        saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file))
        saver.restore(tf.get_default_session(), os.path.join(model_exp, ckpt_file))
Dataset_reader_ImageSeqGen.py 文件源码 项目:Super_TF 作者: Dhruv-Mohan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def next_batch(self, batch_size=1, sess=None):
        with tf.name_scope('Batch_getter') as scope:
            if sess is None :
                self.sess = tf.get_default_session()
            else:
                self.sess = sess

            images, seqs, masks = self.sess.run([self.images , self.complete_seq,  self.complete_mask], feed_dict={self.batch_size : batch_size})
            '''
            print(seqs)
            print(str(seqs[0])[0])
            process_seqs=[]
            process_masks =[]
            for index, c in enumerate(seqs):
                process_seqs.extend([c.decode()])
                process_masks.extend([masks[index].decode()])
            '''
            print(seqs)
            c_seqs = self.finalize_seq(seqs)
            c_masks = self.finalize_seq(masks)
            print(c_seqs)
            input_seqs = self.make_input_seq(c_seqs)
            output_seqs = self.make_output_seq(c_seqs)
            final_masks = self.make_input_seq(c_masks)
            return images , input_seqs, output_seqs, final_masks
test_misc.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_variable_by_name(self):
        with self.test_context():
            name = 'variable'
            variable = tf.get_variable(name, shape=())
            self.assertTrue(gpflow.misc.is_initializable_tensor(variable))

            def equal(found):
                self.assertTrue(gpflow.misc.is_initializable_tensor(found))
                self.assertEqual(found, variable)

            def not_equal(found):
                self.assertEqual(found, None)

            fn = gpflow.misc.get_variable_by_name

            graph = tf.Graph()
            session = tf.get_default_session()
            fake_name = "foo"

            equal(fn(name))
            equal(fn(name, graph=session.graph))
            not_equal(fn(name, graph=graph))
            not_equal(fn(fake_name))
            not_equal(fn(fake_name, graph=graph))
models.py 文件源码 项目:malmomo 作者: matpalm 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def action_given(self, state, add_noise):
    # NOTE: noise is added _outside_ tf graph. we do this simply because the noisy output
    # is never used for any part of computation graph required for online training. it's
    # only used during training after being the replay buffer.
    actions = tf.get_default_session().run(self.output_action,
                                           feed_dict={self.input_state: [state],
                                                      base_network.IS_TRAINING: False,
                                                      base_network.FLIP_HORIZONTALLY: False})
    if add_noise:
      if VERBOSE_DEBUG:
        pre_noise = str(actions)
      actions[0] += self.exploration_noise.sample()
      actions = np.clip(1, -1, actions)  # action output is _always_ (-1, 1)
      if VERBOSE_DEBUG:
        print "TRAIN action_given pre_noise %s post_noise %s" % (pre_noise, actions)
    return map(float, np.squeeze(actions))
monitors_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _run_monitor(self, monitor, num_epochs=3, num_steps_per_epoch=10,
                   pass_max_steps=True):
    if pass_max_steps:
      max_steps = num_epochs * num_steps_per_epoch - 1
    else:
      max_steps = None
    monitor.begin(max_steps=max_steps)
    for epoch in xrange(num_epochs):
      monitor.epoch_begin(epoch)
      should_stop = False
      step = epoch * num_steps_per_epoch
      next_epoch_step = step + num_steps_per_epoch
      while (not should_stop) and (step < next_epoch_step):
        tensors = monitor.step_begin(step)
        output = tf.get_default_session().run(tensors) if tensors else {}
        output = dict(zip(
            [t.name if isinstance(t, tf.Tensor) else t for t in tensors],
            output))
        should_stop = monitor.step_end(step=step, output=output)
        monitor.post_step(step=step, session=None)
        step += 1
      monitor.epoch_end(epoch)
    monitor.end()
monitors_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _run_monitor(self, monitor, num_epochs=3, num_steps_per_epoch=10,
                   pass_max_steps=True):
    if pass_max_steps:
      max_steps = num_epochs * num_steps_per_epoch - 1
    else:
      max_steps = None
    monitor.begin(max_steps=max_steps)
    for epoch in xrange(num_epochs):
      monitor.epoch_begin(epoch)
      should_stop = False
      step = epoch * num_steps_per_epoch
      next_epoch_step = step + num_steps_per_epoch
      while (not should_stop) and (step < next_epoch_step):
        tensors = monitor.step_begin(step)
        output = tf.get_default_session().run(tensors) if tensors else {}
        output = dict(zip(
            [t.name if isinstance(t, tf.Tensor) else t for t in tensors],
            output))
        should_stop = monitor.step_end(step=step, output=output)
        monitor.post_step(step=step, session=None)
        step += 1
      monitor.epoch_end(epoch)
    monitor.end()
cache.py 文件源码 项目:yolo-tf 作者: ruiminshen 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def verify_image_jpeg(imagepath, imageshape):
    scope = inspect.stack()[0][3]
    try:
        graph = tf.get_default_graph()
        path = graph.get_tensor_by_name(scope + '/path:0')
        decode = graph.get_tensor_by_name(scope + '/decode_jpeg:0')
    except KeyError:
        tf.logging.debug('creating decode_jpeg tensor')
        path = tf.placeholder(tf.string, name=scope + '/path')
        imagefile = tf.read_file(path, name=scope + '/read_file')
        decode = tf.image.decode_jpeg(imagefile, channels=3, name=scope + '/decode_jpeg')
    try:
        image = tf.get_default_session().run(decode, {path: imagepath})
    except:
        return False
    return np.all(np.equal(image.shape[:2], imageshape[:2]))
test_parse_model.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test(self, model, cases):
        sess = tf.get_default_session()
        guarantee_initialized_variables(sess)
        embeds = model.compute(model.embeds, cases)
        primitive_embeddings = RLongPrimitiveEmbeddings(6)

        # compute object embedding after applying projection
        object_projection_layer = model._object_projection_layer
        W, b = object_projection_layer.get_weights()  # shapes [10, 6] and [6]
        object_embed = np.ones(10).dot(W) + b

        assert_array_almost_equal(embeds[0],
                                  np.concatenate((np.zeros(6), primitive_embeddings['r'], primitive_embeddings[-1]))
                                  )

        assert_array_almost_equal(embeds[1],
                                  np.concatenate((np.zeros(6), np.zeros(6), primitive_embeddings['X1/1']))
                                  )

        assert_array_almost_equal(embeds[2],
                                  np.concatenate((primitive_embeddings['b'], object_embed, object_embed))
                                  )
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def save_checkpoint(self, checkpoint_name):
        tf.get_collection_ref("threshold")[:] = [float(self.threshold)]
        tf.get_collection_ref("features")[:] = self.features.values()
        tf.get_collection_ref("loss")[:] = [self.loss]
        tf.get_collection_ref("prediction")[:] = [self.prediction]

        os.makedirs(os.path.dirname(checkpoint_name), exist_ok=True)
        saver = tf.train.Saver()
        saver.save(tf.get_default_session(), checkpoint_name)

        with open(os.path.join(os.path.dirname(checkpoint_name), "hparams.txt"), "w") as f:
            f.write(repr(self.hparams.__dict__))
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def predict_proba_with_loss(self, X, y):
        feed_dict = {}
        feed_dict[self.labels] = y
        for key, tensor in self.features.items():
            feed_dict[tensor] = X[key]
        prediction, loss = tf.get_default_session().run(
            [self.prediction, self.loss], feed_dict=feed_dict)
        return np.reshape(prediction, [-1]), loss
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def save_checkpoint(self, checkpoint_name):
        tf.get_collection_ref("threshold")[:] = [float(self.threshold)]
        tf.get_collection_ref("features")[:] = self.features.values()
        tf.get_collection_ref("loss")[:] = [self.loss]
        tf.get_collection_ref("prediction")[:] = [self.prediction]

        os.makedirs(os.path.dirname(checkpoint_name), exist_ok=True)
        saver = tf.train.Saver()
        saver.save(tf.get_default_session(), checkpoint_name)

        with open(os.path.join(os.path.dirname(checkpoint_name), "hparams.txt"), "w") as f:
            f.write(repr(self.hparams.__dict__))
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def predict_proba_with_loss(self, X, y):
        feed_dict = {}
        feed_dict[self.labels] = y
        for key, tensor in self.features.items():
            feed_dict[tensor] = X[key]
        prediction, loss = tf.get_default_session().run(
            [self.prediction, self.loss], feed_dict=feed_dict)
        return np.reshape(prediction, [-1]), loss
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def save_checkpoint(self, checkpoint_name):
        tf.get_collection_ref("threshold")[:] = [float(self.threshold)]
        tf.get_collection_ref("features")[:] = self.features.values()
        tf.get_collection_ref("loss")[:] = [self.loss]
        tf.get_collection_ref("prediction")[:] = [self.prediction]

        os.makedirs(os.path.dirname(checkpoint_name), exist_ok=True)
        saver = tf.train.Saver()
        saver.save(tf.get_default_session(), checkpoint_name)

        with open(os.path.join(os.path.dirname(checkpoint_name), "hparams.txt"), "w") as f:
            f.write(repr(self.hparams.__dict__))
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def save_checkpoint(self, checkpoint_name):
        tf.get_collection_ref("threshold")[:] = [float(self.threshold)]
        tf.get_collection_ref("features")[:] = self.features.values()
        tf.get_collection_ref("loss")[:] = [self.loss]
        tf.get_collection_ref("prediction")[:] = [self.prediction]

        os.makedirs(os.path.dirname(checkpoint_name), exist_ok=True)
        saver = tf.train.Saver()
        saver.save(tf.get_default_session(), checkpoint_name)

        with open(os.path.join(os.path.dirname(checkpoint_name), "hparams.txt"), "w") as f:
            f.write(repr(self.hparams.__dict__))
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def predict_proba_with_loss(self, X, y):
        feed_dict = {}
        feed_dict[self.labels] = y
        for key, tensor in self.features.items():
            feed_dict[tensor] = X[key]
        prediction, loss = tf.get_default_session().run(
            [self.prediction, self.loss], feed_dict=feed_dict)
        return np.reshape(prediction, [-1]), loss
model.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def act(self, ob, c, h):
        sess = tf.get_default_session()
        return sess.run([self.sample, self.vf] + self.state_out,
                        {self.x: [ob], self.state_in[0]: c, self.state_in[1]: h})
model.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def value(self, ob, c, h):
        sess = tf.get_default_session()
        return sess.run(self.vf, {self.x: [ob], self.state_in[0]: c, self.state_in[1]: h})[0]
model.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def act(self, ob, c, h):
        sess = tf.get_default_session()
        return sess.run([self.sample, self.vf] + self.state_out,
                        {self.x: [ob], self.state_in[0]: c, self.state_in[1]: h})
model.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def act(self, ob):
        sess = tf.get_default_session()
        return sess.run([self.sample, self.vf],
                        {self.x: [ob]})


问题


面经


文章

微信
公众号

扫码关注公众号