python类read_file()的实例源码

datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _abspath_no_label_load_file(path, epochs=None, shuffle=True, seed=0):
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
    image_path = value

    image_abspath = image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]

    return image, imgshape, image_path
label_cats.py 文件源码 项目:RaspberryPi-Robot 作者: timestocome 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_tensor_from_image_file(file_name='test.jpg', input_height=128, input_width=128,
                input_mean=0, input_std=255):


  input_name = "file_reader"
  output_name = "normalized"
  file_reader = tf.read_file(file_name, input_name)
  image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader')
  float_caster = tf.cast(image_reader, tf.float32)
  dims_expander = tf.expand_dims(float_caster, 0);
  resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
  normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
  sess = tf.Session()
  result = sess.run(normalized)

  return result
data_handler.py 文件源码 项目:tf-crnn 作者: solivr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def image_reading(path: str, resized_size: Tuple[int, int]=None, data_augmentation: bool=False,
                  padding: bool=False) -> Tuple[tf.Tensor, tf.Tensor]:
    # Read image
    image_content = tf.read_file(path, name='image_reader')
    image = tf.cond(tf.equal(tf.string_split([path], '.').values[1], tf.constant('jpg', dtype=tf.string)),
                    true_fn=lambda: tf.image.decode_jpeg(image_content, channels=1, try_recover_truncated=True), # TODO channels = 3 ?
                    false_fn=lambda: tf.image.decode_png(image_content, channels=1), name='image_decoding')

    # Data augmentation
    if data_augmentation:
        image = augment_data(image)

    # Padding
    if padding:
        with tf.name_scope('padding'):
            image, img_width = padding_inputs_width(image, resized_size, increment=CONST.DIMENSION_REDUCTION_W_POOLING)
    # Resize
    else:
        image = tf.image.resize_images(image, size=resized_size)
        img_width = tf.shape(image)[1]

    with tf.control_dependencies([tf.assert_equal(image.shape[:2], resized_size)]):
        return image, img_width
clock_data.py 文件源码 项目:deep-time-reading 作者: felixduvallet 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_image_and_label(image_label_q):
    # Returns three Tensors: the decoded PNG image, the hour, and the minute.
    filename, hour_str, minute_str = tf.decode_csv(
        image_label_q.dequeue(), [[""], [""], [""]], " ")
    file_contents = tf.read_file(filename)

    # Decode image from PNG, and cast it to a float.
    example = tf.image.decode_png(file_contents, channels=image_channels)
    image = tf.cast(example, tf.float32)

    # Set the tensor size manually from the image.
    image.set_shape([image_size, image_size, image_channels])

    # Do per-image whitening (zero mean, unit standard deviation). Without this,
    # the learning algorithm diverges almost immediately because the gradient is
    # too big.
    image = tf.image.per_image_whitening(image)

    # The label should be an integer.
    hour = tf.string_to_number(hour_str, out_type=tf.int32)
    minute = tf.string_to_number(minute_str, out_type=tf.int32)

    return image, hour, minute
cityscapes.py 文件源码 项目:taskcv-2017-public 作者: VisionLearningGroup 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def tf_ops(self, capacity=32, produce_filenames=False):
        im_path, label_path = tf.train.slice_input_producer(
            [tf.constant(self.images), tf.constant(self.labels)],
            capacity=capacity,
            shuffle=self.shuffle)
        im = tf.read_file(im_path)
        im = tf.image.decode_image(im, channels=3)
        im = tf.cast(im, tf.float32)
        im.set_shape((1024, 2048, 3))
        label = tf.read_file(label_path)
        label = tf.image.decode_image(label, channels=1)
        label = label[:, :, 0]
        label = tf.cast(label, tf.int32)
        label.set_shape((1024, 2048))
        if produce_filenames:
            return im, label, im_path, label_path
        else:
            return im, label
label_image.py 文件源码 项目:keras-to-tensorflow 作者: bitbionic 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_tensor_from_image_file(file_name, input_height=299, input_width=299,
                input_mean=0, input_std=255):
  input_name = "file_reader"
  output_name = "normalized"
  file_reader = tf.read_file(file_name, input_name)
  if file_name.endswith(".png"):
    image_reader = tf.image.decode_png(file_reader, channels = 3,
                                       name='png_reader')
  elif file_name.endswith(".gif"):
    image_reader = tf.squeeze(tf.image.decode_gif(file_reader,
                                                  name='gif_reader'))
  elif file_name.endswith(".bmp"):
    image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
  else:
    image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
                                        name='jpeg_reader')
  float_caster = tf.cast(image_reader, tf.float32)
  dims_expander = tf.expand_dims(float_caster, 0);
  resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
  normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
  sess = tf.Session()
  result = sess.run(normalized)

  return result
data_class.py 文件源码 项目:traffic_video_analysis 作者: polltooh 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def decode(self, filename, distort_data, whiten_data = True):
        """distort: random distort the iamge"""
        image_tensor = tf.read_file(filename)
        image_tensor = self.decode_fun(image_tensor, channels = self.channels, ratio = self.ratio)
        image_tensor = tf.image.convert_image_dtype(image_tensor, tf.float32)
        image_tensor = tf.image.resize_images(image_tensor, 
                                        [self.shape[0] + self.offset, self.shape[1] + self.offset])

        if distort_data:
                # it will crop in the function
                image_tensor = self.distort_op(image_tensor)
        else:
                image_tensor = tf.image.resize_image_with_crop_or_pad(image_tensor,
                                                                                self.shape[0], self.shape[1])
        if whiten_data:
                # Subtract off the mean and divide by the variance of the pixels.
                image_tensor = tf.image.per_image_whitening(image_tensor)

        return image_tensor
data_class.py 文件源码 项目:traffic_video_analysis 作者: polltooh 项目源码 文件源码 阅读 53 收藏 0 点赞 0 评论 0
def decode(self, filename, distort_data, whiten_data = True):
        """distort: random distort the iamge"""
        image_tensor = tf.read_file(filename)
        image_tensor = self.decode_fun(image_tensor, channels = self.channels, ratio = self.ratio)
        image_tensor = tf.image.convert_image_dtype(image_tensor, tf.float32)
        image_tensor = tf.image.resize_images(image_tensor, 
                                        [self.shape[0] + self.offset, self.shape[1] + self.offset])

        if distort_data:
                # it will crop in the function
                image_tensor = self.distort_op(image_tensor)
        else:
                image_tensor = tf.image.resize_image_with_crop_or_pad(image_tensor,
                                                                                self.shape[0], self.shape[1])
        if whiten_data:
                # Subtract off the mean and divide by the variance of the pixels.
                image_tensor = tf.image.per_image_whitening(image_tensor)

        return image_tensor
monodepth_dataloader.py 文件源码 项目:supic 作者: Hirico 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_image(self, image_path):
        # tf.decode_image does not return the image size, this is an ugly workaround to handle both jpeg and png
        path_length = string_length_tf(image_path)[0]
        file_extension = tf.substr(image_path, path_length - 3, 3)
        file_cond = tf.equal(file_extension, 'jpg')

        image  = tf.cond(file_cond, lambda: tf.image.decode_jpeg(tf.read_file(image_path)), lambda: tf.image.decode_png(tf.read_file(image_path)))

        # if the dataset is cityscapes, we crop the last fifth to remove the car hood
        if self.dataset == 'cityscapes':
            o_height    = tf.shape(image)[0]
            crop_height = (o_height * 4) / 5
            image  =  image[:crop_height,:,:]

        image  = tf.image.convert_image_dtype(image,  tf.float32)
        image  = tf.image.resize_images(image,  [self.params.height, self.params.width], tf.image.ResizeMethod.AREA)

        return image
utils_data.py 文件源码 项目:iCaRL 作者: srebuffi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_data(prefix, labels_dic, mixing, files_from_cl):
    image_list = sorted(map(lambda x: os.path.join(prefix, x),
                        filter(lambda x: x.endswith('JPEG'), files_from_cl)))
    prefix2 = []

    for file_i in image_list:
        tmp = file_i.split(prefix+'/')[1].split("_")[0]
        prefix2.append(tmp)

    prefix2     = np.array(prefix2)
    labels_list = np.array([mixing[labels_dic[i]] for i in prefix2])

    assert(len(image_list) == len(labels_list))
    images             = tf.convert_to_tensor(image_list, dtype=tf.string)
    labels             = tf.convert_to_tensor(labels_list, dtype=tf.int32)
    input_queue        = tf.train.slice_input_producer([images, labels], shuffle=True, capacity=2000)
    image_file_content = tf.read_file(input_queue[0])
    label              = input_queue[1]
    image              = tf.image.resize_images(tf.image.decode_jpeg(image_file_content, channels=3), [256, 256])
    image              = tf.random_crop(image, [224, 224, 3])
    image              = tf.image.random_flip_left_right(image)

    return image, label
label_image.py 文件源码 项目:tensorflow-for-poets-2 作者: googlecodelabs 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_tensor_from_image_file(file_name, input_height=299, input_width=299,
                input_mean=0, input_std=255):
  input_name = "file_reader"
  output_name = "normalized"
  file_reader = tf.read_file(file_name, input_name)
  if file_name.endswith(".png"):
    image_reader = tf.image.decode_png(file_reader, channels = 3,
                                       name='png_reader')
  elif file_name.endswith(".gif"):
    image_reader = tf.squeeze(tf.image.decode_gif(file_reader,
                                                  name='gif_reader'))
  elif file_name.endswith(".bmp"):
    image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
  else:
    image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
                                        name='jpeg_reader')
  float_caster = tf.cast(image_reader, tf.float32)
  dims_expander = tf.expand_dims(float_caster, 0);
  resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
  normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
  sess = tf.Session()
  result = sess.run(normalized)

  return result
feature_extractor.py 文件源码 项目:FindYourCandy 作者: BrainPad 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_feature_vectors_from_files(self, image_paths):
        # Decode image
        with self.graph.as_default():
            image_path = tf.placeholder(tf.string, None, 'image_path')
            image = tf.image.decode_jpeg(tf.read_file(image_path))

        # Extract features
        features = []
        with tf.Session(graph=self.graph) as sess:
            for path in image_paths:
                image_data = sess.run(
                    image,
                    {image_path: path}
                )
                feature_data = sess.run(
                    self.feature_op,
                    {INPUT_DATA_TENSOR_NAME: image_data}
                )
                features.append(feature_data)
        return features
cache.py 文件源码 项目:yolo-tf 作者: ruiminshen 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def verify_image_jpeg(imagepath, imageshape):
    scope = inspect.stack()[0][3]
    try:
        graph = tf.get_default_graph()
        path = graph.get_tensor_by_name(scope + '/path:0')
        decode = graph.get_tensor_by_name(scope + '/decode_jpeg:0')
    except KeyError:
        tf.logging.debug('creating decode_jpeg tensor')
        path = tf.placeholder(tf.string, name=scope + '/path')
        imagefile = tf.read_file(path, name=scope + '/read_file')
        decode = tf.image.decode_jpeg(imagefile, channels=3, name=scope + '/decode_jpeg')
    try:
        image = tf.get_default_session().run(decode, {path: imagepath})
    except:
        return False
    return np.all(np.equal(image.shape[:2], imageshape[:2]))
__init__.py 文件源码 项目:yolo-tf 作者: ruiminshen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def decode_image_objects(paths):
    with tf.name_scope(inspect.stack()[0][3]):
        with tf.name_scope('parse_example'):
            reader = tf.TFRecordReader()
            _, serialized = reader.read(tf.train.string_input_producer(paths))
            example = tf.parse_single_example(serialized, features={
                'imagepath': tf.FixedLenFeature([], tf.string),
                'imageshape': tf.FixedLenFeature([3], tf.int64),
                'objects': tf.FixedLenFeature([2], tf.string),
            })
        imagepath = example['imagepath']
        objects = example['objects']
        with tf.name_scope('decode_objects'):
            objects_class = tf.decode_raw(objects[0], tf.int64, name='objects_class')
            objects_coord = tf.decode_raw(objects[1], tf.float32)
            objects_coord = tf.reshape(objects_coord, [-1, 4], name='objects_coord')
        with tf.name_scope('load_image'):
            imagefile = tf.read_file(imagepath)
            image = tf.image.decode_jpeg(imagefile, channels=3)
    return image, example['imageshape'], objects_class, objects_coord
datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _voc_seg_load_file(path, epochs=None, shuffle=True, seed=0):

    PASCAL_ROOT = os.environ['VOC_DIR']
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    image_path, seg_path = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')

    image_abspath = PASCAL_ROOT + image_path
    seg_abspath = PASCAL_ROOT + seg_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]
    imgname = image_path

    seg_content = tf.read_file(seg_abspath)
    seg = tf.cast(tf.image.decode_png(seg_content, channels=1), tf.int32)
    return image, seg, imgshape, imgname
datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _imagenet_load_file(path, epochs=None, shuffle=True, seed=0, subset='train', prepare_path=True):
    IMAGENET_ROOT = os.environ.get('IMAGENET_DIR', '')
    if not isinstance(path, list):
        path = [path]
    filename_queue = tf.train.string_input_producer(path,
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    image_path, label_str = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')

    if prepare_path:
        image_abspath = IMAGENET_ROOT + '/images/' + subset + image_path
    else:
        image_abspath = image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]
    label = tf.string_to_number(label_str, out_type=tf.int32)

    return image, label, imgshape, image_path
datasets.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def _relpath_no_label_load_file(path, root_path, epochs=None, shuffle=True, seed=0):
    filename_queue = tf.train.string_input_producer([path],
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    #image_path, = tf.decode_csv(value, record_defaults=[['']], field_delim=' ')
    image_path = value

    image_abspath = root_path + '/' + image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]

    return image, imgshape, image_path
Inputs.py 文件源码 项目:Tensorflow-SegNet 作者: tkuanlun350 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def CamVid_reader_seq(filename_queue, seq_length):
  image_seq_filenames = tf.split(axis=0, num_or_size_splits=seq_length, value=filename_queue[0])
  label_seq_filenames = tf.split(axis=0, num_or_size_splits=seq_length, value=filename_queue[1])

  image_seq = []
  label_seq = []
  for im ,la in zip(image_seq_filenames, label_seq_filenames):
    imageValue = tf.read_file(tf.squeeze(im))
    labelValue = tf.read_file(tf.squeeze(la))
    image_bytes = tf.image.decode_png(imageValue)
    label_bytes = tf.image.decode_png(labelValue)
    image = tf.cast(tf.reshape(image_bytes, (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH)), tf.float32)
    label = tf.cast(tf.reshape(label_bytes, (IMAGE_HEIGHT, IMAGE_WIDTH, 1)), tf.int64)
    image_seq.append(image)
    label_seq.append(label)
  return image_seq, label_seq
dcgan_w_var2.py 文件源码 项目:deeplearning 作者: zxjzxj9 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _process(self):

        def img_process(fn):
            img = tf.image.decode_image(tf.read_file(fn))
            cropped = tf.image.resize_image_with_crop_or_pad(img, tf.app.flags.FLAGS.crop_height, tf.app.flags.FLAGS.crop_width)
            new_img = tf.image.resize_images(cropped, (tf.app.flags.FLAGS.target_height, tf.app.flags.FLAGS.target_width), method = 
                                             tf.image.ResizeMethod.AREA)
            return fn, new_img

        filenames = tf.constant(glob.glob(os.path.join(self.src_dir,"*")))
        dataset = tf.data.Dataset.from_tensor_slices((filenames, ))
        dataset = dataset.map(img_process)
        dataset = dataset.shuffle(buffer_size=10000)
        dataset = dataset.batch(tf.app.flags.FLAGS.batch_size)
        dataset = dataset.repeat(tf.app.flags.FLAGS.epochs)

        iterator = dataset.make_one_shot_iterator()

        labels, imgs = iterator.get_next()
        return labels, imgs
dcgan_w_gp.py 文件源码 项目:deeplearning 作者: zxjzxj9 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _process(self):

        def img_process(fn):
            img = tf.image.decode_image(tf.read_file(fn))
            cropped = tf.image.resize_image_with_crop_or_pad(img, tf.app.flags.FLAGS.crop_height, tf.app.flags.FLAGS.crop_width)
            new_img = tf.image.resize_images(cropped, (tf.app.flags.FLAGS.target_height, tf.app.flags.FLAGS.target_width), method = 
                                             tf.image.ResizeMethod.AREA)
            return fn, new_img

        filenames = tf.constant(glob.glob(os.path.join(self.src_dir,"*")))
        dataset = tf.data.Dataset.from_tensor_slices((filenames, ))
        dataset = dataset.map(img_process)
        dataset = dataset.shuffle(buffer_size=10000)
        dataset = dataset.batch(tf.app.flags.FLAGS.batch_size)
        dataset = dataset.repeat(tf.app.flags.FLAGS.epochs)

        iterator = dataset.make_one_shot_iterator()

        labels, imgs = iterator.get_next()
        return labels, imgs
dcgan_var2.py 文件源码 项目:deeplearning 作者: zxjzxj9 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _process(self):

        def img_process(fn):
            img = tf.image.decode_image(tf.read_file(fn))
            cropped = tf.image.resize_image_with_crop_or_pad(img, tf.app.flags.FLAGS.crop_height, tf.app.flags.FLAGS.crop_width)
            new_img = tf.image.resize_images(cropped, (tf.app.flags.FLAGS.target_height, tf.app.flags.FLAGS.target_width), method = 
                                             tf.image.ResizeMethod.AREA)
            return fn, new_img

        filenames = tf.constant(glob.glob(os.path.join(self.src_dir,"*")))
        dataset = tf.data.Dataset.from_tensor_slices((filenames, ))
        dataset = dataset.map(img_process)
        dataset = dataset.shuffle(buffer_size=10000)
        dataset = dataset.batch(tf.app.flags.FLAGS.batch_size)
        dataset = dataset.repeat(tf.app.flags.FLAGS.epochs)

        iterator = dataset.make_one_shot_iterator()

        labels, imgs = iterator.get_next()
        return labels, imgs
DataHandeling.py 文件源码 项目:DeepCellSeg 作者: arbellea 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image(self):
        _, records = self.reader.read(self.input_queue)
        file_names = tf.decode_csv(records, [tf.constant([], tf.string), tf.constant([], tf.string)],
                                   field_delim=None, name=None)

        im_raw = tf.read_file(self.base_folder+file_names[0])
        seg_raw = tf.read_file(self.base_folder+file_names[1])
        image = tf.reshape(
                            tf.cast(tf.image.decode_png(
                                                    im_raw,
                                                    channels=1, dtype=tf.uint16),
                                    tf.float32), self.image_size, name='input_image')
        seg = tf.reshape(
                        tf.cast(tf.image.decode_png(
                                                    seg_raw,
                                                    channels=1, dtype=tf.uint8),
                                tf.float32), self.image_size, name='input_seg')

        return image, seg, file_names[0]
DataHandeling.py 文件源码 项目:DeepCellSeg 作者: arbellea 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def _get_image(self):

        im_filename = tf.sparse_tensor_to_dense(tf.string_split(tf.expand_dims(self.raw_queue.dequeue(), 0), ':'), '')
        im_filename.set_shape([1, 2])
        im_raw = tf.read_file(self.base_folder+im_filename[0][0])
        seg_raw = tf.read_file(self.base_folder+im_filename[0][1])

        image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                           self.image_size, name='input_image')
        seg = tf.reshape(tf.cast(tf.image.decode_png(seg_raw, channels=1, dtype=tf.uint8), tf.float32), self.image_size,
                         name='input_seg')
        if self.partial_frame:
            crop_y_start = int(((1-self.partial_frame) * self.image_size[0])/2)
            crop_y_end = int(((1+self.partial_frame) * self.image_size[0])/2)
            crop_x_start = int(((1-self.partial_frame) * self.image_size[1])/2)
            crop_x_end = int(((1+self.partial_frame) * self.image_size[1])/2)
            image = tf.slice(image, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])
            seg = tf.slice(seg, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])

        return image, seg, im_filename[0][0], im_filename[0][1]
DataHandeling.py 文件源码 项目:DeepCellSeg 作者: arbellea 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_image_sequence(self):
        filenames = self.raw_queue
        im_list = []
        seg_list = []
        for i in range(0, len(filenames), 2):
            im_filename, seg_filename = filenames[i], filenames[i+1]
            im_raw = tf.read_file(self.base_folder+im_filename)
            seg_raw = tf.read_file(self.base_folder+seg_filename)

            image_size = self.image_size + (1, )
            image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                               image_size)
            seg = tf.reshape(tf.cast(tf.image.decode_png(seg_raw, channels=1, dtype=tf.uint8), tf.float32),
                             image_size)
            if self.partial_frame:
                crop_y_start = int(((1-self.partial_frame) * image_size[0])/2)
                crop_y_end = int(((1+self.partial_frame) * image_size[0])/2)
                crop_x_start = int(((1-self.partial_frame) * image_size[1])/2)
                crop_x_end = int(((1+self.partial_frame) * image_size[1])/2)
                image = tf.slice(image, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])
                seg = tf.slice(seg, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])
            im_list.append(image)
            seg_list.append(seg)

        return im_list, seg_list, filenames
tf_utils.py 文件源码 项目:thesis_scripts 作者: PhilippKopp 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def subtract_mean_multi(image_tensors, mean_image_path, channels=NUM_CHANNELS, image_size=512):

    mean_image = tf.convert_to_tensor(mean_image_path, dtype=tf.string)
    mean_file_contents = tf.read_file(mean_image)
    mean_uint8 = tf.image.decode_png(mean_file_contents, channels=channels)
    mean_uint8.set_shape([image_size, image_size, channels])


    images_mean_free = []
    for image_tensor in image_tensors:
        image_tensor.set_shape([image_size, image_size, channels])
        image = tf.cast(image_tensor, tf.float32)

        #subtract mean image
        image_mean_free = tf.subtract(image, tf.cast(mean_uint8, tf.float32))
        images_mean_free.append(image_mean_free)

    return images_mean_free
resnet50.py 文件源码 项目:npfl114 作者: ufal 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, checkpoint, threads):
        # Create the session
        self.session = tf.Session(graph = tf.Graph(), config=tf.ConfigProto(inter_op_parallelism_threads=threads,
                                                                            intra_op_parallelism_threads=threads))

        with self.session.graph.as_default():
            # Construct the model
            self.images = tf.placeholder(tf.float32, [None, self.HEIGHT, self.WIDTH, 3])

            with tf_slim.arg_scope(tf_slim.nets.resnet_v1.resnet_arg_scope(is_training=False)):
                resnet, _ = tf_slim.nets.resnet_v1.resnet_v1_50(self.images, num_classes = self.CLASSES)

            self.predictions = tf.argmax(tf.squeeze(resnet, [1, 2]), 1)

            # Load the checkpoint
            self.saver = tf.train.Saver()
            self.saver.restore(self.session, checkpoint)

            # JPG loading
            self.jpeg_file = tf.placeholder(tf.string, [])
            self.jpeg_data = tf.image.resize_image_with_crop_or_pad(tf.image.decode_jpeg(tf.read_file(self.jpeg_file), channels=3), self.HEIGHT, self.WIDTH)
monodepth_dataloader.py 文件源码 项目:monodepth 作者: mrharicot 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def read_image(self, image_path):
        # tf.decode_image does not return the image size, this is an ugly workaround to handle both jpeg and png
        path_length = string_length_tf(image_path)[0]
        file_extension = tf.substr(image_path, path_length - 3, 3)
        file_cond = tf.equal(file_extension, 'jpg')

        image  = tf.cond(file_cond, lambda: tf.image.decode_jpeg(tf.read_file(image_path)), lambda: tf.image.decode_png(tf.read_file(image_path)))

        # if the dataset is cityscapes, we crop the last fifth to remove the car hood
        if self.dataset == 'cityscapes':
            o_height    = tf.shape(image)[0]
            crop_height = (o_height * 4) // 5
            image  =  image[:crop_height,:,:]

        image  = tf.image.convert_image_dtype(image,  tf.float32)
        image  = tf.image.resize_images(image,  [self.params.height, self.params.width], tf.image.ResizeMethod.AREA)

        return image
chinese_character_recognition_bn.py 文件源码 项目:Chinese-Character-Recognition 作者: soloice 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def input_pipeline(self, batch_size, num_epochs=None, aug=False):
        images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
        labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
        input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs)

        labels = input_queue[1]
        images_content = tf.read_file(input_queue[0])
        images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
        if aug:
            images = self.data_augmentation(images)
        new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)
        images = tf.image.resize_images(images, new_size)
        image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
                                                          min_after_dequeue=10000)
        # print 'image_batch', image_batch.get_shape()
        return image_batch, label_batch
inputs.py 文件源码 项目:TF-SegNet 作者: mathildor 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def dataset_reader(filename_queue): #prev name: CamVid_reader

    image_filename = filename_queue[0] #tensor of type string
    label_filename = filename_queue[1] #tensor of type string

    #get png encoded image
    imageValue = tf.read_file(image_filename)
    labelValue = tf.read_file(label_filename)

    #decodes a png image into a uint8 or uint16 tensor
    #returns a tensor of type dtype with shape [height, width, depth]
    image_bytes = tf.image.decode_png(imageValue)
    label_bytes = tf.image.decode_png(labelValue) #Labels are png, not jpeg

    image = tf.reshape(image_bytes, (FLAGS.image_h, FLAGS.image_w, FLAGS.image_c))
    label = tf.reshape(label_bytes, (FLAGS.image_h, FLAGS.image_w, 1))

    return image, label
data_utils.py 文件源码 项目:Face-Recognition 作者: aswl01 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_images_from_disk(input_queue):
    """Consumes a single filename and label as a ' '-delimited string.
    Args:
      filename_and_label_tensor: A scalar string tensor.
    Returns:
      Two tensors: the decoded image, and the string label.
    """
    label = input_queue[1]
    file_contents = tf.read_file(input_queue[0])
    example = tf.image.decode_png(file_contents, channels=3)
    return example, label


# def random_rotate_image(image):
#     angle = np.random.uniform(low=-10.0, high=10.0)
#     return misc.imrotate(image, angle, 'bicubic')


问题


面经


文章

微信
公众号

扫码关注公众号