python类FIFOQueue()的实例源码

cifar10_input_test.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    contents = b"".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join(self.get_temp_dir(), "cifar")
    open(filename, "wb").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        self.assertEqual("%s:%d" % (filename, i), tf.compat.as_text(key))
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image])
image_reader.py 文件源码 项目:tf_base 作者: ozansener 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def setup_reader(self, image_paths, image_shape, num_concurrent, batch_size):
    # Path queue is list of image paths which will further be processed by another queue
    num_images = len(image_paths)
    indices = tf.range(0, num_images, 1)

    self.path_queue = tf.FIFOQueue(capacity=num_images, dtypes=[tf.int32, tf.string], name='path_queue')
    self.enqueue_path = self.path_queue.enqueue_many([indices, image_paths])
    self.close_path = self.path_queue.close()

    processed_queue = tf.FIFOQueue(capacity=num_images,
                       dtypes=[tf.int32, tf.float32],
                       shapes=[(), image_shape],
                       name='processed_queue')

    (idx, processed_image) = self.process()
    enqueue_process = processed_queue.enqueue([idx, processed_image])
    self.dequeue_batch = processed_queue.dequeue_many(batch_size)

    self.queue_runner = tf.train.QueueRunner(processed_queue, [enqueue_process] * num_concurrent)
cifar10_input_test.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    contents = b"".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join(self.get_temp_dir(), "cifar")
    open(filename, "wb").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        self.assertEqual("%s:%d" % (filename, i), tf.compat.as_text(key))
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image])
kitti_low_input.py 文件源码 项目:KittiClass 作者: MarvinTeichmann 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def create_queues(hypes, phase):
    """Create Queues."""
    arch = hypes['arch']
    dtypes = [tf.float32, tf.int32]

    height = 224
    width = 224
    channel = 3
    shapes = [[height, width, channel], []]

    capacity = 50
    q = tf.FIFOQueue(capacity=50, dtypes=dtypes, shapes=shapes)
    tf.summary.scalar("queue/%s/fraction_of_%d_full" %
                      (q.name + "_" + phase, capacity),
                      math_ops.cast(q.size(), tf.float32) * (1. / capacity))

    return q
kitti_input.py 文件源码 项目:KittiClass 作者: MarvinTeichmann 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_queues(hypes, phase):
    """Create Queues."""
    arch = hypes['arch']
    dtypes = [tf.float32, tf.int32]

    shape_known = hypes['jitter']['fix_shape'] or \
        hypes['jitter']['resize_image']

    if shape_known:
        height = hypes['jitter']['image_height']
        width = hypes['jitter']['image_width']
        channel = hypes['arch']['num_channels']
        shapes = [[height, width, channel],
                  []]
    else:
        shapes = None

    capacity = 50
    q = tf.FIFOQueue(capacity=50, dtypes=dtypes, shapes=shapes)
    tf.summary.scalar("queue/%s/fraction_of_%d_full" %
                      (q.name + "_" + phase, capacity),
                      math_ops.cast(q.size(), tf.float32) * (1. / capacity))

    return q
tfcmgr.py 文件源码 项目:keras_experiments 作者: avolkov1 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_mydevlist(self, ngpus):
        wdev_list = self.get_allworkers_devlist(ngpus)
        mytask_id = self.mytask_id
        #:  :type wdev: tf.DeviceSpec
        mywdev_list = [wdev for wdev in wdev_list if wdev.task == mytask_id]

        return mywdev_list


# =============================================================================
# SIGNAL QUEUES: https://github.com/hustcat/tensorflow_examples/blob/master/mnist_distributed/dist_fifo.py @IgnorePep8
# =============================================================================
# def create_done_queue(i, num_workers=1):
#     """Queue used to signal death for i'th ps shard. Intended to have
#       all workers enqueue an item onto it to signal doneness."""
#
#     with tf.device("/job:ps/task:%d" % (i)):
#         return tf.FIFOQueue(num_workers, tf.int32,
#                             shared_name="done_queue{}".format(i))
#
#
# def create_done_queues(num_ps):
#     return [create_done_queue(i) for i in range(num_ps)]

# Perhaps implement a READY queue just like DONE queues.
cifar10_input_test.py 文件源码 项目:keras_experiments 作者: avolkov1 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    contents = b"".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join(self.get_temp_dir(), "cifar")
    open(filename, "wb").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        self.assertEqual("%s:%d" % (filename, i), tf.compat.as_text(key))
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image])
cifar10_input_test.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    contents = b"".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join(self.get_temp_dir(), "cifar")
    open(filename, "wb").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        self.assertEqual("%s:%d" % (filename, i), tf.compat.as_text(key))
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image])
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testUpdateOpsReturnsCurrentValue(self):
    with self.test_session() as sess:
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values)

      sess.run(tf.initialize_local_variables())

      self.assertAlmostEqual(0.5, sess.run(update_op), 5)
      self.assertAlmostEqual(1.475, sess.run(update_op), 5)
      self.assertAlmostEqual(12.4/6.0, sess.run(update_op), 5)
      self.assertAlmostEqual(1.65, sess.run(update_op), 5)

      self.assertAlmostEqual(1.65, sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test1dWeightedValues(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weighted labels.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 1))
      _enqueue_vector(sess, weights_queue, [1])
      _enqueue_vector(sess, weights_queue, [0])
      _enqueue_vector(sess, weights_queue, [0])
      _enqueue_vector(sess, weights_queue, [1])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values, weights)

      tf.initialize_local_variables().run()
      for _ in range(4):
        update_op.eval()
      self.assertAlmostEqual((0 + 1 - 3.2 + 4.0) / 4.0, mean.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test1dWeightedValues_placeholders(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      feed_values = (
          (0, 1),
          (-4.2, 9.1),
          (6.5, 0),
          (-3.2, 4.0)
      )
      values = tf.placeholder(dtype=tf.float32)

      # Create the queue that populates the weighted labels.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 1))
      _enqueue_vector(sess, weights_queue, [1])
      _enqueue_vector(sess, weights_queue, [0])
      _enqueue_vector(sess, weights_queue, [0])
      _enqueue_vector(sess, weights_queue, [1])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values, weights)

      tf.initialize_local_variables().run()
      for i in range(4):
        update_op.eval(feed_dict={values: feed_values[i]})
      self.assertAlmostEqual((0 + 1 - 3.2 + 4.0) / 4.0, mean.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test2dWeightedValues(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weighted labels.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, weights_queue, [1, 1])
      _enqueue_vector(sess, weights_queue, [1, 0])
      _enqueue_vector(sess, weights_queue, [0, 1])
      _enqueue_vector(sess, weights_queue, [0, 0])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values, weights)

      tf.initialize_local_variables().run()
      for _ in range(4):
        update_op.eval()
      self.assertAlmostEqual((0 + 1 - 4.2 + 0) / 4.0, mean.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testMultiDimensional(self):
    with self.test_session() as sess:
      values_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(2, 2, 2))
      _enqueue_vector(sess,
                      values_queue,
                      [[[1, 2], [1, 2]], [[1, 2], [1, 2]]],
                      shape=(2, 2, 2))
      _enqueue_vector(sess,
                      values_queue,
                      [[[1, 2], [1, 2]], [[3, 4], [9, 10]]],
                      shape=(2, 2, 2))
      values = values_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values)

      sess.run(tf.initialize_local_variables())
      for _ in range(2):
        sess.run(update_op)
      self.assertAllClose([[[1, 2], [1, 2]], [[2, 3], [5, 6]]],
                          sess.run(mean))
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testUpdateOpsReturnsCurrentValue(self):
    with self.test_session() as sess:
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values)

      sess.run(tf.initialize_local_variables())

      self.assertAllClose([[0, 1]], sess.run(update_op), 5)
      self.assertAllClose([[-2.1, 5.05]], sess.run(update_op), 5)
      self.assertAllClose([[2.3/3., 10.1/3.]], sess.run(update_op), 5)
      self.assertAllClose([[-0.9/4., 3.525]], sess.run(update_op), 5)

      self.assertAllClose([[-0.9/4., 3.525]], sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testWeighted1d(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weights.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 1))
      _enqueue_vector(sess, weights_queue, [[1]])
      _enqueue_vector(sess, weights_queue, [[0]])
      _enqueue_vector(sess, weights_queue, [[1]])
      _enqueue_vector(sess, weights_queue, [[0]])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values, weights)

      sess.run(tf.initialize_local_variables())
      for _ in range(4):
        sess.run(update_op)
      self.assertAllClose([[3.25, 0.5]], sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testWeighted2d_1(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weights.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, weights_queue, [1, 1])
      _enqueue_vector(sess, weights_queue, [1, 0])
      _enqueue_vector(sess, weights_queue, [0, 1])
      _enqueue_vector(sess, weights_queue, [0, 0])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values, weights)

      sess.run(tf.initialize_local_variables())
      for _ in range(4):
        sess.run(update_op)
      self.assertAllClose([[-2.1, 0.5]], sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testMultipleBatchesOfSizeOne(self):
    with self.test_session() as sess:
      # Create the queue that populates the predictions.
      preds_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, preds_queue, [10, 8, 6])
      _enqueue_vector(sess, preds_queue, [-4, 3, -1])
      predictions = preds_queue.dequeue()

      # Create the queue that populates the labels.
      labels_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, labels_queue, [1, 3, 2])
      _enqueue_vector(sess, labels_queue, [2, 4, 6])
      labels = labels_queue.dequeue()

      error, update_op = metrics.streaming_mean_squared_error(
          predictions, labels)

      sess.run(tf.initialize_local_variables())
      sess.run(update_op)
      self.assertAlmostEqual(208.0 / 6, sess.run(update_op), 5)

      self.assertAlmostEqual(208.0 / 6, error.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testUpdateOpsReturnsCurrentValue(self):
    with self.test_session() as sess:
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values)

      sess.run(tf.local_variables_initializer())

      self.assertAlmostEqual(0.5, sess.run(update_op), 5)
      self.assertAlmostEqual(1.475, sess.run(update_op), 5)
      self.assertAlmostEqual(12.4/6.0, sess.run(update_op), 5)
      self.assertAlmostEqual(1.65, sess.run(update_op), 5)

      self.assertAlmostEqual(1.65, sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test1dWeightedValues_placeholders(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      feed_values = (
          (0, 1),
          (-4.2, 9.1),
          (6.5, 0),
          (-3.2, 4.0)
      )
      values = tf.placeholder(dtype=tf.float32)

      # Create the queue that populates the weighted labels.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 1))
      _enqueue_vector(sess, weights_queue, [1])
      _enqueue_vector(sess, weights_queue, [0])
      _enqueue_vector(sess, weights_queue, [0])
      _enqueue_vector(sess, weights_queue, [1])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values, weights)

      tf.local_variables_initializer().run()
      for i in range(4):
        update_op.eval(feed_dict={values: feed_values[i]})
      self.assertAlmostEqual((0 + 1 - 3.2 + 4.0) / 4.0, mean.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test2dWeightedValues(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weighted labels.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, weights_queue, [1, 1])
      _enqueue_vector(sess, weights_queue, [1, 0])
      _enqueue_vector(sess, weights_queue, [0, 1])
      _enqueue_vector(sess, weights_queue, [0, 0])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values, weights)

      tf.local_variables_initializer().run()
      for _ in range(4):
        update_op.eval()
      self.assertAlmostEqual((0 + 1 - 4.2 + 0) / 4.0, mean.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test2dWeightedValues_placeholders(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      feed_values = (
          (0, 1),
          (-4.2, 9.1),
          (6.5, 0),
          (-3.2, 4.0)
      )
      values = tf.placeholder(dtype=tf.float32)

      # Create the queue that populates the weighted labels.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, weights_queue, [1, 1])
      _enqueue_vector(sess, weights_queue, [1, 0])
      _enqueue_vector(sess, weights_queue, [0, 1])
      _enqueue_vector(sess, weights_queue, [0, 0])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean(values, weights)

      tf.local_variables_initializer().run()
      for i in range(4):
        update_op.eval(feed_dict={values: feed_values[i]})
      self.assertAlmostEqual((0 + 1 - 4.2 + 0) / 4.0, mean.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testMultiDimensional(self):
    with self.test_session() as sess:
      values_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(2, 2, 2))
      _enqueue_vector(sess,
                      values_queue,
                      [[[1, 2], [1, 2]], [[1, 2], [1, 2]]],
                      shape=(2, 2, 2))
      _enqueue_vector(sess,
                      values_queue,
                      [[[1, 2], [1, 2]], [[3, 4], [9, 10]]],
                      shape=(2, 2, 2))
      values = values_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values)

      sess.run(tf.local_variables_initializer())
      for _ in range(2):
        sess.run(update_op)
      self.assertAllClose([[[1, 2], [1, 2]], [[2, 3], [5, 6]]],
                          sess.run(mean))
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def testWeighted1d(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weights.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 1))
      _enqueue_vector(sess, weights_queue, [[1]])
      _enqueue_vector(sess, weights_queue, [[0]])
      _enqueue_vector(sess, weights_queue, [[1]])
      _enqueue_vector(sess, weights_queue, [[0]])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values, weights)

      sess.run(tf.local_variables_initializer())
      for _ in range(4):
        sess.run(update_op)
      self.assertAllClose([[3.25, 0.5]], sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def testWeighted2d_1(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weights.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, weights_queue, [1, 1])
      _enqueue_vector(sess, weights_queue, [1, 0])
      _enqueue_vector(sess, weights_queue, [0, 1])
      _enqueue_vector(sess, weights_queue, [0, 0])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values, weights)

      sess.run(tf.local_variables_initializer())
      for _ in range(4):
        sess.run(update_op)
      self.assertAllClose([[-2.1, 0.5]], sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testWeighted2d_2(self):
    with self.test_session() as sess:
      # Create the queue that populates the values.
      values_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, values_queue, [0, 1])
      _enqueue_vector(sess, values_queue, [-4.2, 9.1])
      _enqueue_vector(sess, values_queue, [6.5, 0])
      _enqueue_vector(sess, values_queue, [-3.2, 4.0])
      values = values_queue.dequeue()

      # Create the queue that populates the weights.
      weights_queue = tf.FIFOQueue(4, dtypes=tf.float32, shapes=(1, 2))
      _enqueue_vector(sess, weights_queue, [0, 1])
      _enqueue_vector(sess, weights_queue, [0, 0])
      _enqueue_vector(sess, weights_queue, [0, 1])
      _enqueue_vector(sess, weights_queue, [0, 0])
      weights = weights_queue.dequeue()

      mean, update_op = metrics.streaming_mean_tensor(values, weights)

      sess.run(tf.local_variables_initializer())
      for _ in range(4):
        sess.run(update_op)
      self.assertAllClose([[0, 0.5]], sess.run(mean), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testMultipleBatchesOfSizeOne(self):
    with self.test_session() as sess:
      # Create the queue that populates the predictions.
      preds_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, preds_queue, [10, 8, 6])
      _enqueue_vector(sess, preds_queue, [-4, 3, -1])
      predictions = preds_queue.dequeue()

      # Create the queue that populates the labels.
      labels_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, labels_queue, [1, 3, 2])
      _enqueue_vector(sess, labels_queue, [2, 4, 6])
      labels = labels_queue.dequeue()

      error, update_op = metrics.streaming_mean_squared_error(
          predictions, labels)

      sess.run(tf.local_variables_initializer())
      sess.run(update_op)
      self.assertAlmostEqual(208.0 / 6, sess.run(update_op), 5)

      self.assertAlmostEqual(208.0 / 6, error.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testMultipleMetricsOnMultipleBatchesOfSizeOne(self):
    with self.test_session() as sess:
      # Create the queue that populates the predictions.
      preds_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, preds_queue, [10, 8, 6])
      _enqueue_vector(sess, preds_queue, [-4, 3, -1])
      predictions = preds_queue.dequeue()

      # Create the queue that populates the labels.
      labels_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, labels_queue, [1, 3, 2])
      _enqueue_vector(sess, labels_queue, [2, 4, 6])
      labels = labels_queue.dequeue()

      mae, ma_update_op = metrics.streaming_mean_absolute_error(
          predictions, labels)
      mse, ms_update_op = metrics.streaming_mean_squared_error(
          predictions, labels)

      sess.run(tf.local_variables_initializer())
      sess.run([ma_update_op, ms_update_op])
      sess.run([ma_update_op, ms_update_op])

      self.assertAlmostEqual(32.0 / 6, mae.eval(), 5)
      self.assertAlmostEqual(208.0 / 6, mse.eval(), 5)
video_avi_flow_saliency.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, path, batch_size=16, input_size=227,
                 scale_factor=1.0, num_threads=10):
        self._path = path

        self._list_files = glob.glob(os.path.join(path, "**/*.avi"))

        self._batch_size = batch_size
        self._scale_factor = scale_factor
        self._image_size = input_size
        self._label_size = int(input_size * self._scale_factor)
        self._num_threads = num_threads
        self._coord = tf.train.Coordinator()
        self._image_shape = [batch_size, self._image_size, self._image_size, 3]
        self._label_shape = [batch_size, self._label_size, self._label_size, 1]
        p_x = tf.placeholder(tf.float32, self._image_shape, name='x')
        p_y = tf.placeholder(tf.float32, self._label_shape, name='y')
        inputs = [p_x, p_y]
        self._queue = tf.FIFOQueue(400,
                [i.dtype for i in inputs], [i.get_shape() for i in inputs])
        self._inputs = inputs
        self._enqueue_op = self._queue.enqueue(inputs)
        self._queue_close_op = self._queue.close(cancel_pending_enqueues=True)
        self._threads = []
video_avi_flow.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, files, batch_size=16, input_size=227,
                 scale_factor=1.0, num_threads=10):
        self._list_files = files
        self._batch_size = batch_size
        self._scale_factor = scale_factor
        self._image_size = input_size
        self._label_size = int(input_size * self._scale_factor)
        self._num_threads = num_threads
        self._coord = tf.train.Coordinator()
        self._image_shape = [batch_size, self._image_size, self._image_size, 3]
        self._label_shape = [batch_size, self._label_size, self._label_size, 2]
        p_x = tf.placeholder(tf.float32, self._image_shape, name='x')
        p_y = tf.placeholder(tf.float32, self._label_shape, name='y')
        inputs = [p_x, p_y]
        self._queue = tf.FIFOQueue(400,
                [i.dtype for i in inputs], [i.get_shape() for i in inputs])
        self._inputs = inputs
        self._enqueue_op = self._queue.enqueue(inputs)
        self._queue_close_op = self._queue.close(cancel_pending_enqueues=True)
        self._threads = []
video_jpeg_rolls_flow_saliency.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, path, root_path='', batch_size=16, input_size=227, num_threads=10):
        self._path = path
        self._root_path = root_path
        with open(path) as f:
            self._list_files = [x.rstrip('\n') for x in f.readlines()]
        print('list_files', len(self._list_files))

        self._batch_size = batch_size
        self._input_size = input_size
        self._num_threads = num_threads
        self._coord = tf.train.Coordinator()
        self._base_shape = [batch_size, input_size, input_size]
        self._image_shape = self._base_shape + [3]
        self._label_shape = self._base_shape + [1]
        p_x = tf.placeholder(tf.float32, self._image_shape, name='x')
        p_y = tf.placeholder(tf.float32, self._label_shape, name='y')
        inputs = [p_x, p_y]
        self._queue = tf.FIFOQueue(400,
                [i.dtype for i in inputs], [i.get_shape() for i in inputs])
        self._inputs = inputs
        self._enqueue_op = self._queue.enqueue(inputs)
        self._queue_close_op = self._queue.close(cancel_pending_enqueues=True)
        self._threads = []


问题


面经


文章

微信
公众号

扫码关注公众号