python类sub()的实例源码

loopprocessing.py 文件源码 项目:MusicGenerator 作者: Conchylicultor 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(X):
        """ Predict the output from prev and scale the result on [-1, 1]
        Use sigmoid activation
        Args:
            X (tf.Tensor): the input
        Return:
            tf.Ops: the activate_and_scale operator
        """
        # TODO: Use tanh instead ? tanh=2*sigm(2*x)-1
        with tf.name_scope('activate_and_scale'):
            return tf.sub(tf.mul(2.0, tf.nn.sigmoid(X)), 1.0)  # x_{i} = 2*sigmoid(y_{i-1}) - 1
tf_utils.py 文件源码 项目:rlflow 作者: tpbarron 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def stddev(x):
    x = tf.to_float(x)
    return tf.sqrt(tf.reduce_mean(tf.square(tf.abs
        (tf.sub(x, tf.fill(x.get_shape(), tf.reduce_mean(x)))))))
inception_preprocessing.py 文件源码 项目:isbi2017-part3 作者: learningtitans 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def preprocess_for_eval(image, height, width,
                        central_fraction=0.875, scope=None):
  """Prepare one image for evaluation.

  If height and width are specified it would output an image with that size by
  applying resize_bilinear.

  If central_fraction is specified it would cropt the central fraction of the
  input image.

  Args:
    image: 3-D Tensor of image. If dtype is tf.float32 then the range should be
      [0, 1], otherwise it would converted to tf.float32 assuming that the range
      is [0, MAX], where MAX is largest positive representable number for
      int(8/16/32) data type (see `tf.image.convert_image_dtype` for details)
    height: integer
    width: integer
    central_fraction: Optional Float, fraction of the image to crop.
    scope: Optional scope for name_scope.
  Returns:
    3-D float Tensor of prepared image.
  """
  with tf.name_scope(scope, 'eval_image', [image, height, width]):
    if image.dtype != tf.float32:
      image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    # Crop the central region of the image with an area containing 87.5% of
    # the original image.
    if central_fraction:
      image = tf.image.central_crop(image, central_fraction=central_fraction)

    if height and width:
      # Resize the image to the specified height and width.
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(image, [height, width],
                                       align_corners=False)
      image = tf.squeeze(image, [0])
    image = tf.sub(image, 0.5)
    image = tf.mul(image, 2.0)
    return image
test_mycnn.py 文件源码 项目:tensorflow_homographynet 作者: linjian93 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def main(_):
    test_img_list = load_data(dir_test)
    mean_var = np.load('log/log_mycnn/mean_var_out.npz')

    x1 = tf.placeholder(tf.float32, [None, 128, 128, 2])  # data
    x2 = tf.placeholder(tf.float32, [None, 8])  # label
    x4 = tf.placeholder(tf.float32, [])  # dropout
    net = Mycnn(x1, x4, bn_in=mean_var.f.arr_0)
    fc2 = net.out

    loss = tf.reduce_sum(tf.square(tf.sub(fc2, x2))) / 2 / batch_size

    # gpu configuration
    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    # gpu_opinions = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)

    saver = tf.train.Saver(max_to_keep=None)

    with tf.Session(config=tf_config) as sess:
        saver.restore(sess, dir_load)
        test_model = DataSet(test_img_list)
        loss_total = []
        for i in range(iter_max):
            x_batch_test, y_batch_test, h1_test, img1, img2 = test_model.next_batch()
            np.savetxt(((dir_save + '/h1_%d.txt') % i), h1_test)
            np.savetxt(((dir_save + '/label_%d.txt') % i), y_batch_test)
            cv2.imwrite(((dir_save + '/image_%d_1.jpg') % i), img1)
            cv2.imwrite(((dir_save + '/image_%d_2.jpg') % i), img2)

            pre, average_loss = sess.run([fc2, loss], feed_dict={x1: x_batch_test, x2: y_batch_test, x4: 1.0})

            np.savetxt(((dir_save + '/predict_%d.txt') % i), pre)
            loss_total.append(average_loss)

            print ('iter %05d, test loss = %.5f' % ((i+1), average_loss))

        np.savetxt((dir_save + '/loss.txt'), loss_total)
crbm.py 文件源码 项目:CDBN-for-Tensorflow 作者: shygiants 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __pool(self):
        # Pooling
        with tf.name_scope('pooling') as _:
            self.pooled_prob = tf.sub(1., tf.div(1., 1. + tf.mul(self.__avg_pool(tf.exp(self.signal)), self.pool_size * self.pool_size)), name='pooled_prob')
            self.pooled = self.__sample(self.pooled_prob, 'pooled')
crbm.py 文件源码 项目:CDBN-for-Tensorflow 作者: shygiants 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __gradient_ascent(self):
        # Gradient ascent
        with tf.name_scope('gradient') as _:
            self.grad_bias = tf.mul(tf.reduce_mean(self.hid_prob0 - self.hid_prob1, [0, 1, 2]),
                                    self.learning_rate * self.batch_size, name='grad_bias')
            self.grad_cias = tf.mul(tf.reduce_mean(self.vis_0 - self.vis_1, [0, 1, 2]),
                                    self.learning_rate * self.batch_size, name='grad_cias')

            # TODO: Is there any method to calculate batch-elementwise convolution?
            temp_grad_weights = tf.zeros(self.weight_shape)
            hid_filter0 = tf.reverse(self.hid_prob0, [False, True, True, False])
            hid_filter1 = tf.reverse(self.hid_prob1, [False, True, True, False])
            for idx in range(0, self.batch_size):
                hid0_ith = self.__get_ith_hid_4d(hid_filter0, idx)
                hid1_ith = self.__get_ith_hid_4d(hid_filter1, idx)

                positive = [0] * self.depth
                negative = [0] * self.depth
                one_ch_conv_shape = [self.width, self.height, 1, self.num_features]
                for jdx in range(0, self.depth):
                    positive[jdx] = tf.reshape(self.__conv2d(self.__get_ij_vis_4d(self.vis_0, idx, jdx), hid0_ith),
                                               one_ch_conv_shape)
                    negative[jdx] = tf.reshape(self.__conv2d(self.__get_ij_vis_4d(self.vis_1, idx, jdx), hid1_ith),
                                               one_ch_conv_shape)
                positive = tf.concat(2, positive)
                negative = tf.concat(2, negative)
                temp_grad_weights = tf.add(temp_grad_weights,
                                           tf.slice(tf.sub(positive, negative), [0, 0, 0, 0], self.weight_shape))

            self.grad_weights = tf.mul(temp_grad_weights, self.learning_rate / (self.width * self.height))
        self.gradient_ascent = [self.weights.assign_add(self.grad_weights),
                                self.bias.assign_add(self.grad_bias),
                                self.cias.assign_add(self.grad_cias)]
image_processing.py 文件源码 项目:dlbench 作者: hclhkbu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def image_preprocessing(image_buffer, bbox, train, thread_id=0):
    """Decode and preprocess one image for evaluation or training.

  Args:
    image_buffer: JPEG encoded string Tensor
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
    train: boolean
    thread_id: integer indicating preprocessing thread

  Returns:
    3-D float Tensor containing an appropriately scaled image

  Raises:
    ValueError: if user does not provide bounding box
  """
    if bbox is None:
        raise ValueError('Please supply a bounding box.')

    image = decode_jpeg(image_buffer)
    height = FLAGS.input_size
    width = FLAGS.input_size

    if train:
        image = distort_image(image, height, width, bbox, thread_id)
    else:
        image = eval_image(image, height, width)

    # Finally, rescale to [-1,1] instead of [0, 1)
    image = tf.sub(image, 0.5)
    image = tf.mul(image, 2.0)
    return image
operations.py 文件源码 项目:TensorFlow-Machine-Learning-Cookbook 作者: PacktPublishing 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def custom_polynomial(x_val):
    # Return 3x^2 - x + 10
    return(tf.sub(3 * tf.square(x_val), x_val) + 10)
single_File_For_ColorizationModel_For_Not_OOP_Fan.py 文件源码 项目:Deep-learning-Colorization-for-visual-media 作者: OmarSayedMostafa 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def Train():
    global AbColores_values
    global CurrentBatch_indx
    global GreyImages_Batch
    global EpochsNum
    global ExamplesNum
    global Batch_size
    Input_images = tf.placeholder(dtype=tf.float32,shape=[None,224,224,1],name="X_inputs")
    Ab_Labels_tensor = tf.placeholder(dtype=tf.float32,shape=[None,224,224,2],name="Labels_inputs")
    Prediction = TriainModel(Input_images) 
    Colorization_MSE = tf.reduce_mean((Frobenius_Norm(tf.sub(Prediction,Ab_Labels_tensor))))
    Optmizer = tf.train.AdamOptimizer().minimize(Colorization_MSE)
    #sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver = tf.train.import_meta_graph('Model Directory/our_model.meta')
    saver.restore(sess, 'Model Directory/our_model')
    PrevLoss = 0
    for epoch in range(EpochsNum):
        epoch_loss = 0
        CurrentBatch_indx = 1
        for i in range(int(ExamplesNum / Batch_size)):#Over batches
           print("Batch Num ",i + 1)
           ReadNextBatch()
           a, c = sess.run([Optmizer,Colorization_MSE],feed_dict={Input_images:GreyImages_Batch,Ab_Labels_tensor:AbColores_values})
           epoch_loss += c
        print("epoch: ",epoch + 1, ",Loss: ",epoch_loss,", Diff:",PrevLoss - epoch_loss)
        PrevLoss = epoch_loss

    saver.save(sess, 'Model Directory/our_model',write_meta_graph=False)
loss.py 文件源码 项目:TF-phrasecut-public 作者: chenxi116 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def dsc_loss(scores, labels):
    scores = tf.sigmoid(scores)
    inter = tf.scalar_mul(2., tf.reduce_sum(tf.multiply(scores, labels), [1, 2, 3]))
    union = tf.add(tf.reduce_sum(scores, [1, 2, 3]), tf.reduce_sum(labels, [1, 2, 3]))
    dsc_loss = tf.reduce_mean(tf.sub(1., tf.div(inter, union)))

    return dsc_loss
loss.py 文件源码 项目:TF-phrasecut-public 作者: chenxi116 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def iou_loss(scores, labels):
    scores = tf.sigmoid(scores)
    inter = tf.reduce_sum(tf.multiply(scores, labels), [1, 2, 3])
    union = tf.add(tf.reduce_sum(scores, [1, 2, 3]), tf.reduce_sum(labels, [1, 2, 3]))
    union = tf.sub(union, inter)
    iou_loss = tf.reduce_mean(tf.sub(1., tf.div(inter, union)))

    return iou_loss
utils_tf.py 文件源码 项目:FeatureSqueezing 作者: QData 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def tf_model_eval_distance(sess, x, model1, model2, X_test):
    """
    Compute the L1 distance between prediction of original and squeezed data.
    :param sess: TF session to use when training the graph
    :param x: input placeholder
    :param model1: model output original predictions
    :param model2: model output squeezed predictions
    :param X_test: numpy array with training inputs
    :return: a float vector with the distance value
    """
    # Define sympbolic for accuracy
    # acc_value = keras.metrics.categorical_accuracy(y, model)

    l2_diff = tf.sqrt( tf.reduce_sum(tf.square(tf.sub(model1, model2)),
                                    axis=1))
    l_inf_diff = tf.reduce_max(tf.abs(tf.sub(model1, model2)), axis=1)
    l1_diff = tf.reduce_sum(tf.abs(tf.sub(model1, model2)), axis=1)

    l1_dist_vec = np.zeros((len(X_test)))

    with sess.as_default():
        # Compute number of batches
        nb_batches = int(math.ceil(float(len(X_test)) / FLAGS.batch_size))
        assert nb_batches * FLAGS.batch_size >= len(X_test)

        for batch in range(nb_batches):
            if batch % 100 == 0 and batch > 0:
                print("Batch " + str(batch))

            # Must not use the `batch_indices` function here, because it
            # repeats some examples.
            # It's acceptable to repeat during training, but not eval.
            start = batch * FLAGS.batch_size
            end = min(len(X_test), start + FLAGS.batch_size)
            cur_batch_size = end - start

            l1_dist_vec[start:end] = l1_diff.eval(feed_dict={x: X_test[start:end],keras.backend.learning_phase(): 0})

        assert end >= len(X_test)
    return l1_dist_vec
network_helpers.py 文件源码 项目:texture-networks 作者: ProofByConstruction 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def spatial_batch_norm(input_layer, name='spatial_batch_norm'):
    """
    Batch-normalizes the layer as in http://arxiv.org/abs/1502.03167
    This is important since it allows the different scales to talk to each other when they get joined.
    """
    mean, variance = tf.nn.moments(input_layer, [0, 1, 2])
    variance_epsilon = 0.01  # TODO: Check what this value should be
    inv = tf.rsqrt(variance + variance_epsilon)
    num_channels = input_layer.get_shape().as_list()[3]  # TODO: Clean this up
    scale = tf.Variable(tf.random_uniform([num_channels]), name='scale')  # TODO: How should these initialize?
    offset = tf.Variable(tf.random_uniform([num_channels]), name='offset')
    return_val = tf.sub(tf.mul(tf.mul(scale, inv), tf.sub(input_layer, mean)), offset, name=name)
    return return_val
vgg_network.py 文件源码 项目:texture-networks 作者: ProofByConstruction 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def content_loss(self, layers):
        activations = [self.activations_for_layer(i) for i in layers]
        activation_diffs = [
            tf.sub(
                tf.tile(tf.slice(a, [self.num_style, 0, 0, 0], [self.num_content, -1, -1, -1]), [self.num_synthesized - self.num_content + 1, 1, 1, 1]),
                tf.slice(a, [self.num_style + self.num_content, 0, 0, 0], [self.num_content, -1, -1, -1]))
            for a in activations]
        # This normalizer is in JCJohnson's paper, but not Gatys' I think?
        Ns = [a.get_shape().as_list()[1] * a.get_shape().as_list()[2] * a.get_shape().as_list()[3] for a in activations]
        content_loss = tf.div(tf.add_n([tf.div(tf.reduce_sum(tf.square(a)), n) for a, n in zip(activation_diffs, Ns)]), 2.0)
        return content_loss
inception_preprocessing.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def preprocess_for_eval(image, height, width,
                        central_fraction=0.875, scope=None):
    """Prepare one image for evaluation.

    If height and width are specified it would output an image with that size by
    applying resize_bilinear.

    If central_fraction is specified it would cropt the central fraction of the
    input image.

    Args:
        image: 3-D Tensor of image. If dtype is tf.float32 then the range should be
            [0, 1], otherwise it would converted to tf.float32 assuming that the range
            is [0, MAX], where MAX is largest positive representable number for
            int(8/16/32) data type (see `tf.image.convert_image_dtype` for details)
        height: integer
        width: integer
        central_fraction: Optional Float, fraction of the image to crop.
        scope: Optional scope for name_scope.
    Returns:
        3-D float Tensor of prepared image.
    """
    with tf.name_scope(scope, 'eval_image', [image, height, width]):
        if image.dtype != tf.float32:
            image = tf.image.convert_image_dtype(image, dtype=tf.float32)
        # Crop the central region of the image with an area containing 87.5% of
        # the original image.
        if central_fraction:
            image = tf.image.central_crop(image, central_fraction=central_fraction)

        if height and width:
            # Resize the image to the specified height and width.
            image = tf.expand_dims(image, 0)
            image = tf.image.resize_bilinear(image, [height, width],
                                             align_corners=False)
            image = tf.squeeze(image, [0])
        image = tf.sub(image, 0.5)
        image = tf.mul(image, 2.0)
        return image
tf.py 文件源码 项目:keras-mdn 作者: yanji84 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def tf_normal(y, mu, sigma):
  oneDivSqrtTwoPI = 1 / math.sqrt(2*math.pi)
  result = tf.sub(y, mu)
  result = tf.transpose(result, [2,1,0])
  result = tf.mul(result,tf.inv(sigma + 1e-8))
  result = -tf.square(result)/2
  result = tf.mul(tf.exp(result),tf.inv(sigma + 1e-8))*oneDivSqrtTwoPI
  result = tf.reduce_prod(result, reduction_indices=[0])
  return result
monitors_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_logging_trainable(self):
    with tf.Graph().as_default() as g, self.test_session(g):
      var = tf.Variable(tf.constant(42.0), name='foo')
      var.initializer.run()
      cof = tf.constant(1.0)
      loss = tf.sub(tf.mul(var, cof), tf.constant(1.0))
      train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
      tf.get_default_session().run(train_step)
      self._run_monitor(learn.monitors.LoggingTrainable('foo'))
      self.assertRegexpMatches(str(self.logged_message), var.name)
monitors_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_logging_trainable(self):
    with tf.Graph().as_default() as g, self.test_session(g):
      var = tf.Variable(tf.constant(42.0), name='foo')
      var.initializer.run()
      cof = tf.constant(1.0)
      loss = tf.sub(tf.mul(var, cof), tf.constant(1.0))
      train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
      tf.get_default_session().run(train_step)
      self._run_monitor(learn.monitors.LoggingTrainable('foo'))
      self.assertRegexpMatches(str(self.logged_message), var.name)
core_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def setUp(self):
    super(CoreBinaryOpsTest, self).setUp()

    self.x_probs_broadcast_tensor = tf.reshape(
        self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])

    self.channel_probs_broadcast_tensor = tf.reshape(
        self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])

    # == and != are not element-wise for tf.Tensor, so they shouldn't be
    # elementwise for LabeledTensor, either.
    self.ops = [
        ('add', operator.add, tf.add, core.add),
        ('sub', operator.sub, tf.sub, core.sub),
        ('mul', operator.mul, tf.mul, core.mul),
        ('div', operator.truediv, tf.div, core.div),
        ('mod', operator.mod, tf.mod, core.mod),
        ('pow', operator.pow, tf.pow, core.pow_function),
        ('equal', None, tf.equal, core.equal),
        ('less', operator.lt, tf.less, core.less),
        ('less_equal', operator.le, tf.less_equal, core.less_equal),
        ('not_equal', None, tf.not_equal, core.not_equal),
        ('greater', operator.gt, tf.greater, core.greater),
        ('greater_equal', operator.ge, tf.greater_equal, core.greater_equal),
    ]
    self.test_lt_1 = self.x_probs_lt
    self.test_lt_2 = self.channel_probs_lt
    self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
    self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
    self.broadcast_axes = [self.a0, self.a1, self.a3]
image_processing.py 文件源码 项目:TF-Examples 作者: CharlesShang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def image_preprocessing(image_buffer, bbox, train, thread_id=0):
    """Decode and preprocess one image for evaluation or training.

  Args:
    image_buffer: JPEG encoded string Tensor
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
    train: boolean
    thread_id: integer indicating preprocessing thread

  Returns:
    3-D float Tensor containing an appropriately scaled image

  Raises:
    ValueError: if user does not provide bounding box
  """
    if bbox is None:
        raise ValueError('Please supply a bounding box.')

    image = decode_jpeg(image_buffer)
    height = FLAGS.input_size
    width = FLAGS.input_size

    if train:
        image = distort_image(image, height, width, bbox, thread_id)
    else:
        image = eval_image(image, height, width)

    # Finally, rescale to [-1,1] instead of [0, 1)
    image = tf.sub(image, 0.5)
    image = tf.mul(image, 2.0)
    return image


问题


面经


文章

微信
公众号

扫码关注公众号