python类decode_raw()的实例源码

09_tfrecord_example.py 文件源码 项目:deeplearning 作者: fanfanfeng 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames,name='queue')
    reader = tf.TFRecordReader()
    _,tfrecord_serialized = reader.read(tfrecord_file_queue)

    tfrecord_features = tf.parse_single_example(tfrecord_serialized,features={
        'label':tf.FixedLenFeature([],tf.int64),
        'shape':tf.FixedLenFeature([],tf.string),
        'image':tf.FixedLenFeature([],tf.string),
    },name='features')


    image = tf.decode_raw(tfrecord_features['image'],tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'],tf.int32)

    image = tf.reshape(image,shape)
    label = tfrecord_features['label']
    return label,shape,image
CNN_for_tfrecords.py 文件源码 项目:gong_an_pictures 作者: oukohou 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_decode_tfrecords(records_path, num_epochs=1020, batch_size=Flags.batch_size, num_threads=2):
    if gfile.IsDirectory(records_path):
        records_path = [os.path.join(records_path, i) for i in os.listdir(records_path)]
    else:
        records_path = [records_path]
    records_path_queue = tf.train.string_input_producer(records_path, seed=123,
                                                        num_epochs=num_epochs,
                                                        name="string_input_producer")
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(records_path_queue, name="serialized_example")
    features = tf.parse_single_example(serialized=serialized_example,
                                       features={"img_raw": tf.FixedLenFeature([], tf.string),
                                                 "label": tf.FixedLenFeature([], tf.int64),
                                                 "height": tf.FixedLenFeature([], tf.int64),
                                                 "width": tf.FixedLenFeature([], tf.int64),
                                                 "depth": tf.FixedLenFeature([], tf.int64)},
                                       name="parse_single_example")
    image = tf.decode_raw(features["img_raw"], tf.uint8, name="decode_raw")
    image.set_shape([height * width * 3])
    image = tf.cast(image, tf.float32) * (1.0 / 255) - 0.5
    label = tf.cast(features["label"], tf.int32)
    images, labels = tf.train.shuffle_batch([image, label], batch_size=batch_size, num_threads=num_threads,
                                            name="shuffle_bath", capacity=1020, min_after_dequeue=64)
    print("images' shape is :", str(images.shape))
    return images, labels
test_CNN_no_refactor.py 文件源码 项目:gong_an_pictures 作者: oukohou 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def read_decode_tfrecords(records_path, num_epochs=1, batch_size=Flags.batch_size, num_threads=1):
    if gfile.IsDirectory(records_path):
        records_path = [os.path.join(records_path, i) for i in os.listdir(records_path)]
    else:
        records_path = [records_path]
    records_path_queue = tf.train.string_input_producer(records_path, seed=123,
                                                        num_epochs=None,
                                                        name="string_input_producer")
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(records_path_queue, name="serialized_example")
    features = tf.parse_single_example(serialized=serialized_example,
                                       features={"img_raw": tf.FixedLenFeature([], tf.string),
                                                 "label": tf.FixedLenFeature([], tf.int64),
                                                 "height": tf.FixedLenFeature([], tf.int64),
                                                 "width": tf.FixedLenFeature([], tf.int64),
                                                 "depth": tf.FixedLenFeature([], tf.int64)},
                                       name="parse_single_example")
    image = tf.decode_raw(features["img_raw"], tf.uint8, name="decode_raw")
    image.set_shape([IMAGE_PIXELS])
    image = tf.cast(image, tf.float32) * (1.0 / 255) - 0.5
    label = tf.cast(features["label"], tf.int32)
    images, labels = tf.train.shuffle_batch([image, label], batch_size=batch_size, num_threads=num_threads,
                                            name="shuffle_bath", capacity=1020, min_after_dequeue=50)
    return images, labels
test_CNN_with_checkpoints.py 文件源码 项目:gong_an_pictures 作者: oukohou 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_decode_tfrecords(records_path, num_epochs=1020, batch_size=Flags.batch_size, num_threads=2):
    if gfile.IsDirectory(records_path):
        records_path = [os.path.join(records_path, i) for i in os.listdir(records_path)]
    else:
        records_path = [records_path]
    records_path_queue = tf.train.string_input_producer(records_path, seed=123,
                                                        # num_epochs=num_epochs,
                                                        name="string_input_producer")
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(records_path_queue, name="serialized_example")
    features = tf.parse_single_example(serialized=serialized_example,
                                       features={"img_raw": tf.FixedLenFeature([], tf.string),
                                                 "label": tf.FixedLenFeature([], tf.int64),
                                                 "height": tf.FixedLenFeature([], tf.int64),
                                                 "width": tf.FixedLenFeature([], tf.int64),
                                                 "depth": tf.FixedLenFeature([], tf.int64)},
                                       name="parse_single_example")
    image = tf.decode_raw(features["img_raw"], tf.uint8, name="decode_raw")
    image.set_shape([IMAGE_PIXELS])
    image = tf.cast(image, tf.float32) * (1.0 / 255) - 0.5
    label = tf.cast(features["label"], tf.int32)
    # images, labels = tf.train.shuffle_batch([image, label], batch_size=batch_size, num_threads=num_threads,
    #                                         name="shuffle_bath", capacity=1020, min_after_dequeue=64)
    return image, label
tutorial_tfrecord.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_and_decode(filename):
    # generate a queue with a given file name
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)     # return the file and the name of file
    features = tf.parse_single_example(serialized_example,  # see parse_single_sequence_example for sequence example
                                       features={
                                           'label': tf.FixedLenFeature([], tf.int64),
                                           'img_raw' : tf.FixedLenFeature([], tf.string),
                                       })
    # You can do more image distortion here for training data
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    img = tf.reshape(img, [224, 224, 3])
    # img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    return img, label
tutorial_tfrecord.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def read_and_decode(filename):
    # generate a queue with a given file name
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)     # return the file and the name of file
    features = tf.parse_single_example(serialized_example,  # see parse_single_sequence_example for sequence example
                                       features={
                                           'label': tf.FixedLenFeature([], tf.int64),
                                           'img_raw' : tf.FixedLenFeature([], tf.string),
                                       })
    # You can do more image distortion here for training data
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    img = tf.reshape(img, [224, 224, 3])
    # img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    return img, label
ocr_utils.py 文件源码 项目:video_subtitle_extract 作者: thewintersun 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'height': tf.FixedLenFeature([], tf.int64),
          'width': tf.FixedLenFeature([], tf.int64),
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label': tf.VarLenFeature(tf.int64),
      })

  image = tf.decode_raw(features['image_raw'], tf.uint8)
  image = tf.reshape(image, [730, 38])

  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

  label = tf.cast(features['label'], tf.int32)

  return image, label
ocr_utils.py 文件源码 项目:video_subtitle_extract 作者: thewintersun 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'height': tf.FixedLenFeature([], tf.int64),
          'width': tf.FixedLenFeature([], tf.int64),
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label': tf.VarLenFeature(tf.int64),
      })

  image = tf.decode_raw(features['image_raw'], tf.uint8)
  image = tf.reshape(image, [730, 38])

  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

  label = tf.cast(features['label'], tf.int32)

  return image, label
batch_inputs.py 文件源码 项目:sample-cnn 作者: tae-jun 项目源码 文件源码 阅读 57 收藏 0 点赞 0 评论 0
def _read_example(filename_queue, n_labels=50, n_samples=59049):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
    serialized_example,
    features={
      'raw_labels': tf.FixedLenFeature([], tf.string),
      'raw_segment': tf.FixedLenFeature([], tf.string)
    })

  segment = tf.decode_raw(features['raw_segment'], tf.float32)
  segment.set_shape([n_samples])

  labels = tf.decode_raw(features['raw_labels'], tf.uint8)
  labels.set_shape([n_labels])
  labels = tf.cast(labels, tf.float32)

  return segment, labels
tfrecord_model_test_mnist.py 文件源码 项目:sample-cnn 作者: tae-jun 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_and_decode(filename, one_hot=True, n_classes=None):
  """ Return tensor to read from TFRecord """
  filename_queue = tf.train.string_input_producer([filename])
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(serialized_example,
                                     features={
                                       'label': tf.FixedLenFeature([],
                                                                   tf.int64),
                                       'image_raw': tf.FixedLenFeature([],
                                                                       tf.string),
                                     })
  # You can do more image distortion here for training data
  img = tf.decode_raw(features['image_raw'], tf.uint8)
  img.set_shape([28 * 28])
  img = tf.reshape(img, [28, 28, 1])
  img = tf.cast(img, tf.float32) * (1. / 255) - 0.5

  label = tf.cast(features['label'], tf.int32)
  if one_hot and n_classes:
    label = tf.one_hot(label, n_classes)

  return img, label
input.py 文件源码 项目:IllustrationGAN 作者: tdrussell 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def read_and_decode_cifar(filename_queue):
    label_bytes = 1
    height = 32
    width = 32
    depth = 3
    image_bytes = height * width * depth
    record_bytes = label_bytes + image_bytes
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    _, value = reader.read(filename_queue)

    record_bytes = tf.decode_raw(value, tf.uint8)

    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                             [depth, height, width])
    image = tf.transpose(depth_major, [1, 2, 0])
    image = tf.cast(image, tf.float32) * (2. / 255) - 1

    return image
02_tfrecord_example.py 文件源码 项目:tf_oreilly 作者: chiphuyen 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
    reader = tf.TFRecordReader()
    _, tfrecord_serialized = reader.read(tfrecord_file_queue)

    # label and image are stored as bytes but could be stored as 
    # int64 or float64 values in a serialized tf.Example protobuf.
    tfrecord_features = tf.parse_single_example(tfrecord_serialized,
                        features={
                            'label': tf.FixedLenFeature([], tf.int64),
                            'shape': tf.FixedLenFeature([], tf.string),
                            'image': tf.FixedLenFeature([], tf.string),
                        }, name='features')
    # image was saved as uint8, so we have to decode as uint8.
    image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)
    # the image tensor is flattened out, so we have to reconstruct the shape
    image = tf.reshape(image, shape)
    label = tfrecord_features['label']
    return label, shape, image
loadLargeData.py 文件源码 项目:tensorflow-DDT 作者: wangchao66 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_and_decode(filename):
    filename_queue = tf.train.string_input_producer([filename])

    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'label': tf.FixedLenFeature([], tf.int64),
                                           'img_raw': tf.FixedLenFeature([], tf.string),
                                       })

    img = tf.decode_raw(features['img_raw'], tf.uint8)
    img = tf.reshape(img, [28, 28, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)

    return img, label
CreatTFrecoder.py 文件源码 项目:maliciou_code_cnn 作者: playgood111 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_tfrecord(filename_queuetemp):
    filename_queue = tf.train.string_input_producer([filename_queuetemp])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'width': tf.FixedLenFeature([], tf.int64),
          'depth': tf.FixedLenFeature([], tf.int64),
          'label': tf.FixedLenFeature([], tf.int64)
      }
    )
    image = tf.decode_raw(features['image_raw'], tf.uint8)
    # image
    depth = features['depth']
    tf.reshape(image, [299, 299, 3])
    # normalize

    image = tf.cast(image, tf.float32) * (1. /255) - 0.5
    # label
    label = tf.cast(features['label'], tf.int32)
    return image, label
data_reader.py 文件源码 项目:DeepFFM 作者: waylensu 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'ind': tf.FixedLenFeature([], tf.string),
            'val': tf.FixedLenFeature([], tf.string),
            'label': tf.FixedLenFeature([], tf.int64),
        })

    ind = tf.decode_raw(features['ind'], tf.int32)
    val = tf.decode_raw(features['val'], tf.float32)

    ind.set_shape([39])
    val.set_shape([39])

    ind = tf.cast(ind, tf.int32)
    val = tf.cast(val, tf.float32)
    label = tf.cast(features['label'], tf.int64)

    return ind, val, label
lsun.py 文件源码 项目:Multi-class_GAN 作者: xudonmao 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_and_decode(self, filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape([FLAGS.output_size*FLAGS.output_size*3])
    image = tf.reshape(image, [FLAGS.output_size,FLAGS.output_size,3])

    image = tf.cast(image, tf.float32) * (1. / 127.5) - 1.0

    return image
convert.py 文件源码 项目:ML-Study 作者: corona10 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def read_raw_images(sess, data_set):
    filename = ['./data/' + data_set + '_data.bin']
    filename_queue = tf.train.string_input_producer(filename)
    print filename
    record_bytes = (FLAGS.height) * (FLAGS.width) * FLAGS.depth + 1
    image_bytes = (FLAGS.height) * (FLAGS.width) * FLAGS.depth
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    key, value = reader.read(filename_queue)
    record_bytes = tf.decode_raw(value, tf.uint8)
    #record_label = tf.decode_raw(value, tf.int32)
    tf.train.start_queue_runners(sess=sess)
    for i in range(0, 10):
        result = sess.run(record_bytes)
        print i, result[0], len(result)
        image = result[1:len(result)]
        print image
captcha_input.py 文件源码 项目:captcha_recognize 作者: PatrickLib 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label_raw': tf.FixedLenFeature([], tf.string),
      })
  image = tf.decode_raw(features['image_raw'], tf.int16)
  image.set_shape([IMAGE_HEIGHT * IMAGE_WIDTH])
  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
  reshape_image = tf.reshape(image, [IMAGE_HEIGHT, IMAGE_WIDTH, 1])
  label = tf.decode_raw(features['label_raw'], tf.uint8)
  label.set_shape([CHARS_NUM * CLASSES_NUM])
  reshape_label = tf.reshape(label, [CHARS_NUM, CLASSES_NUM])
  return tf.cast(reshape_image, tf.float32), tf.cast(reshape_label, tf.float32)
display.py 文件源码 项目:tensorflowbook 作者: thewintersun 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'height': tf.FixedLenFeature([], tf.int64),
          'width': tf.FixedLenFeature([], tf.int64),
          'channels': tf.FixedLenFeature([], tf.int64),
          'image_data': tf.FixedLenFeature([], tf.string),
          'label': tf.FixedLenFeature([], tf.int64),
      })

  image = tf.decode_raw(features['image_data'], tf.uint8)
  image = tf.reshape(image, [100, 100, 3])

  image = tf.cast(image, tf.float32)

  label = tf.cast(features['label'], tf.int32)

  return image, label
onezero.py 文件源码 项目:tensorflowbook 作者: thewintersun 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'height': tf.FixedLenFeature([], tf.int64),
          'width': tf.FixedLenFeature([], tf.int64),
          'channels': tf.FixedLenFeature([], tf.int64),
          'image_data': tf.FixedLenFeature([], tf.string),
          'label': tf.FixedLenFeature([], tf.int64),
      })

  image = tf.decode_raw(features['image_data'], tf.uint8)
  image = tf.reshape(image, [100, 100, 3])

  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
  #image = tf.cast(image, tf.float32) 

  label = tf.cast(features['label'], tf.int32)

  return image, label


问题


面经


文章

微信
公众号

扫码关注公众号