python类parse_single_example()的实例源码

model.py 文件源码 项目:ISLES2017 作者: MiguelMonteiro 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def parse_example(serialized_example):
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'shape': tf.FixedLenFeature([], tf.string),
            'img_raw': tf.FixedLenFeature([], tf.string),
            'gt_raw': tf.FixedLenFeature([], tf.string),
            'example_name': tf.FixedLenFeature([], tf.string)
        })

    with tf.variable_scope('decoder'):
        shape = tf.decode_raw(features['shape'], tf.int32)
        image = tf.decode_raw(features['img_raw'], tf.float32)
        ground_truth = tf.decode_raw(features['gt_raw'], tf.uint8)
        example_name = features['example_name']

    with tf.variable_scope('image'):
        # reshape and add 0 dimension (would be batch dimension)
        image = tf.expand_dims(tf.reshape(image, shape), 0)
    with tf.variable_scope('ground_truth'):
        # reshape
        ground_truth = tf.cast(tf.reshape(ground_truth, shape[:-1]), tf.float32)
    return image, ground_truth, example_name
tfrecords_reader.py 文件源码 项目:AC-GAN 作者: jianpingliu 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_example(self, filename_queue):
        # TFRecoard reader
        reader = tf.TFRecordReader()
        key, serialized_example = reader.read(filename_queue)

        # read data from serialized examples
        features = tf.parse_single_example(
            serialized_example,
            features={
                'label': tf.FixedLenFeature([], tf.int64),
                'image_raw': tf.FixedLenFeature([], tf.string)
            })
        label = features['label']
        image = features['image_raw']

        # decode raw image data as integers
        if self.image_format == 'jpeg':
            decoded_image = tf.image.decode_jpeg(
                image, channels=self.image_channels)
        else:
            decoded_image = tf.decode_raw(image, tf.uint8)

        return decoded_image, label
data_pipeline.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _parse_example(self, serialized):
    """Unpack a serialized example to Tensor."""
    feats = self._get_data_features()
    sz_feats = self._get_sz_features()
    for s in sz_feats:
      feats[s] = sz_feats[s]
    sample = tf.parse_single_example(serialized, features=feats)

    data = {}
    for i, f in enumerate(self.FEATURES):
      s = tf.to_int32(sample[f+'_sz'])

      data[f] = tf.decode_raw(sample[f], self.dtypes[f], name='decode_{}'.format(f))
      data[f] = tf.reshape(data[f], s)

    return data
min_examp.py 文件源码 项目:TFExperiments 作者: gnperdue 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def parse_mnist_tfrec(tfrecord, features_shape):
    tfrecord_features = tf.parse_single_example(
        tfrecord,
        features={
            'features': tf.FixedLenFeature([], tf.string),
            'targets': tf.FixedLenFeature([], tf.string)
        }
    )
    features = tf.decode_raw(tfrecord_features['features'], tf.uint8)
    features = tf.reshape(features, features_shape)
    features = tf.cast(features, tf.float32)
    targets = tf.decode_raw(tfrecord_features['targets'], tf.uint8)
    targets = tf.reshape(targets, [])
    targets = tf.one_hot(indices=targets, depth=10, on_value=1, off_value=0)
    targets = tf.cast(targets, tf.float32)
    return features, targets
DataReaders.py 文件源码 项目:TFExperiments 作者: gnperdue 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def parse_mnist_tfrec(tfrecord, name, features_shape, scalar_targs=False):
    tfrecord_features = tf.parse_single_example(
        tfrecord,
        features={
            'features': tf.FixedLenFeature([], tf.string),
            'targets': tf.FixedLenFeature([], tf.string)
        },
        name=name+'_data'
    )
    with tf.variable_scope('features'):
        features = tf.decode_raw(
            tfrecord_features['features'], tf.uint8
        )
        features = tf.reshape(features, features_shape)
        features = tf.cast(features, tf.float32)
    with tf.variable_scope('targets'):
        targets = tf.decode_raw(tfrecord_features['targets'], tf.uint8)
        if scalar_targs:
            targets = tf.reshape(targets, [])
        targets = tf.one_hot(
            indices=targets, depth=10, on_value=1, off_value=0
        )
        targets = tf.cast(targets, tf.float32)
    return features, targets
read_tfrecord.py 文件源码 项目:tf-sr-zoo 作者: MLJejuCamp2017 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue, batch_size):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    feature = features()
    feature = tf.parse_single_example(
        serialized_example,
        features = feature,
        )
    hr_image = tf.decode_raw(feature['hr_image'], tf.uint8)
    height = tf.cast(feature['height'], tf.int32)
    width = tf.cast(feature['width'], tf.int32)
    print(height)
    image_shape = tf.stack([128, 128,3 ])
    hr_image = tf.reshape(hr_image, image_shape)
    hr_image = tf.image.random_flip_left_right(hr_image)
    hr_image = tf.image.random_contrast(hr_image, 0.5, 1.3)
    hr_images = tf.train.shuffle_batch([hr_image], batch_size = batch_size, capacity = 30,
                                      num_threads = 2,
                                        min_after_dequeue = 10)
    return hr_images
utils.py 文件源码 项目:AssociativeRetrieval 作者: jxwufan 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read(self, shuffle=True, num_epochs=None):
    with tf.name_scope('input'):
      reader = tf.TFRecordReader()
      filename_queue = tf.train.string_input_producer([self.filename], num_epochs=num_epochs)
      _, serialized_input = reader.read(filename_queue)
      inputs = tf.parse_single_example(serialized_input,
                                       features={
                                       'inputs_seq': tf.FixedLenFeature([self.seq_len * 2 + 3], tf.int64),
                                       'output': tf.FixedLenFeature([1], tf.int64)
                                       })
      inputs_seq = inputs['inputs_seq']
      output = inputs['output']
      min_after_dequeue = 100
      if shuffle:
        inputs_seqs, outputs = tf.train.shuffle_batch([inputs_seq, output], batch_size=self.batch_size, num_threads=2, capacity=min_after_dequeue + 3 * self.batch_size, min_after_dequeue=min_after_dequeue)
      else:
        inputs_seqs, outputs = tf.train.batch([inputs_seq, output], batch_size=self.batch_size)
      return inputs_seqs, outputs
semisupervised.py 文件源码 项目:TensorFlow-VAE 作者: dancsalo 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def read_and_decode(self, example_serialized):
        """ Read and decode binarized, raw MNIST dataset from .tfrecords file generated by MNIST.py """
        num = self.flags['num_classes']

        # Parse features from binary file
        features = tf.parse_single_example(
            example_serialized,
            features={
                'image': tf.FixedLenFeature([], tf.string),
                'label': tf.FixedLenFeature([num], tf.int64, default_value=[-1] * num),
                'height': tf.FixedLenFeature([], tf.int64),
                'width': tf.FixedLenFeature([], tf.int64),
                'depth': tf.FixedLenFeature([], tf.int64),
            })
        # Return the converted data
        label = features['label']
        image = tf.decode_raw(features['image'], tf.float32)
        image.set_shape([784])
        image = tf.reshape(image, [28, 28, 1])
        image = (image - 0.5) * 2  # max value = 1, min value = -1
        return image, tf.cast(label, tf.int32)
supervised.py 文件源码 项目:TensorFlow-VAE 作者: dancsalo 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_and_decode(self, example_serialized):
        """ Read and decode binarized, raw MNIST dataset from .tfrecords file generated by MNIST.py """
        features = tf.parse_single_example(
            example_serialized,
            features={
                'image': tf.FixedLenFeature([], tf.string),
                'label': tf.FixedLenFeature([self.flags['num_classes']], tf.int64, default_value=[-1]*self.flags['num_classes']),
                'height': tf.FixedLenFeature([], tf.int64),
                'width': tf.FixedLenFeature([], tf.int64),
                'depth': tf.FixedLenFeature([], tf.int64),
            })
        # now return the converted data
        label = features['label']
        image = tf.decode_raw(features['image'], tf.float32)
        image.set_shape([784])
        image = tf.reshape(image, [28, 28, 1])
        image = (image - 0.5) * 2  # max value = 1, min value = -1
        return image, tf.cast(label, tf.int32)
captcha_input.py 文件源码 项目:dahoam2017 作者: KarimJedda 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label_raw': tf.FixedLenFeature([], tf.string),
      })
  image = tf.decode_raw(features['image_raw'], tf.int16)
  image.set_shape([IMAGE_HEIGHT * IMAGE_WIDTH])
  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
  reshape_image = tf.reshape(image, [IMAGE_HEIGHT, IMAGE_WIDTH, 1])
  label = tf.decode_raw(features['label_raw'], tf.uint8)
  label.set_shape([CHARS_NUM * CLASSES_NUM])
  reshape_label = tf.reshape(label, [CHARS_NUM, CLASSES_NUM])
  return tf.cast(reshape_image, tf.float32), tf.cast(reshape_label, tf.float32)
input_pipline.py 文件源码 项目:tensorflow_face 作者: ZhihengCV 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def parse_example_proto(example_serialized):
    """Parses an Example proto containing a training example of an image.

       The output of the build_image_data.py image preprocessing script is a dataset
       containing serialized Example protocol buffers.
    """
    # Dense features in Example proto.
    feature_map = {
        'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                            default_value=''),
        'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                                default_value=-1),
    }

    with tf.name_scope('decode_tfrecord'):
        features = tf.parse_single_example(example_serialized, feature_map)
        image = decode_jpeg(features['image/encoded'])
        label = tf.cast(features['image/class/label'], dtype=tf.int32)

        return image, label
inputs.py 文件源码 项目:text-classification2 作者: yuhui-lin 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def read_and_decode_embedding(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'label': tf.FixedLenFeature(
                [], tf.int64),
            'sequence_raw': tf.FixedLenFeature(
                [], tf.string),
        })
    sequence = features['sequence_raw']

    # preprocess
    s_decode = tf.decode_raw(sequence, tf.int32)
    s_decode.set_shape([FLAGS.embed_length])

    # Convert label from a scalar uint8 tensor to an int32 scalar.
    label = tf.cast(features['label'], tf.int32)

    return s_decode, label
run.py 文件源码 项目:source_separation_ml_jeju 作者: hjkwon0609 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    features = tf.parse_single_example(serialized_example, features={
        'song_spec': tf.FixedLenFeature([], tf.string),
        'voice_spec': tf.FixedLenFeature([], tf.string),
        'mixed_spec': tf.FixedLenFeature([], tf.string)
        })

    song_spec = transform_spec_from_raw(features['song_spec'])
    voice_spec = transform_spec_from_raw(features['voice_spec'])
    mixed_spec = transform_spec_from_raw(features['mixed_spec'])

    input_spec = stack_spectrograms(mixed_spec)  # this will be the input

    target_spec = tf.concat([song_spec, voice_spec], axis=1) # target spec is going to be a concatenation of song_spec and voice_spec

    return input_spec, target_spec
data_input.py 文件源码 项目:cnn_picture_gazebo 作者: liuyandong1988 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def decode_from_tfrecords(filename,num_epoch=None):
    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#???????????????????????????????????????
    reader=tf.TFRecordReader()
    _,serialized=reader.read(filename_queue)
    example=tf.parse_single_example(serialized,features={
        'height':tf.FixedLenFeature([],tf.int64),
        'width':tf.FixedLenFeature([],tf.int64),
        'nchannel':tf.FixedLenFeature([],tf.int64),
        'image':tf.FixedLenFeature([],tf.string),
        'label':tf.FixedLenFeature([],tf.int64)
    })
    label=tf.cast(example['label'], tf.int32)
    image=tf.decode_raw(example['image'],tf.uint8)
    image=tf.reshape(image,tf.pack([
        tf.cast(example['height'], tf.int32),
        tf.cast(example['width'], tf.int32),
        tf.cast(example['nchannel'], tf.int32)]))
    return image,label
resnet_common.py 文件源码 项目:keras_experiments 作者: avolkov1 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _deserialize_image_record(cls, record):
        feature_map = {
            'image/encoded': tf.FixedLenFeature([], tf.string, ''),
            'image/class/label': tf.FixedLenFeature([1], tf.int64, -1),
            'image/class/text': tf.FixedLenFeature([], tf.string, ''),
            'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
            'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
            'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
            'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32)
        }
        with tf.name_scope('deserialize_image_record'):
            obj = tf.parse_single_example(record, feature_map)
            imgdata = obj['image/encoded']
            label = tf.cast(obj['image/class/label'], tf.int32)
            bbox = tf.stack([obj['image/object/bbox/%s' % x].values
                             for x in ['ymin', 'xmin', 'ymax', 'xmax']])
            bbox = tf.transpose(tf.expand_dims(bbox, 0), [0, 2, 1])
            text = obj['image/class/text']
            return imgdata, label, bbox, text
read_tfrecord.py 文件源码 项目:tensorflow-yys 作者: ystyle 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def read_and_decode(filename, batch_size):
    # ???????????
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)  # ????????
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'img_raw': tf.FixedLenFeature([], tf.string),
        }
    )
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    print('xxxx: ', img.get_shape())
    img = tf.reshape(img, [512, 144, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    image_batch, label_batch = tf.train.batch([img, label],
                                              batch_size=batch_size,
                                              num_threads=64,
                                              capacity=2000)
    return image_batch, tf.reshape(label_batch, [batch_size])
ML_Final_Project.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
ML_Final_Project_LBP.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
demo.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
data.py 文件源码 项目:age-gender-classification 作者: yunsangq 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def parse_example_proto(example_serialized):
    # Dense features in Example proto.
    feature_map = {
        'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                            default_value=''),
        'image/filename': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),

        'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                                default_value=-1),
        'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                               default_value=''),
        'image/height': tf.FixedLenFeature([1], dtype=tf.int64,
                                           default_value=-1),
        'image/width': tf.FixedLenFeature([1], dtype=tf.int64,
                                          default_value=-1),

    }

    features = tf.parse_single_example(example_serialized, feature_map)
    label = tf.cast(features['image/class/label'], dtype=tf.int32)
    return features['image/encoded'], label, features['image/filename']
Dataset_reader_ImageSeqGen.py 文件源码 项目:Super_TF 作者: Dhruv-Mohan 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def single_read(self):
        features = tf.parse_single_example(self.serialized_example, features=self._Feature_dict)
        image = tf.image.decode_image(features[self._Image_handle])
        image.set_shape(self.image_shape)
        image = tf.image.convert_image_dtype(image, tf.float32)
        image = image - self.mean_image
        #Alright we've got images, now to get seqs and masks
        complete_seq =  features[self._Seq_handle]
        complete_mask = features[self._Seq_mask]
        '''
        decoded_seq = self.get_seq(complete_seq)
        decoded_mask = self.get_seq(complete_mask)

        sequence_lenght = len(complete_seq)
        input_seq = decoded_seq[0:sequence_lenght-1]
        target_seq = decoded_seq[1:sequence_lenght]
        final_mask = decoded_mask[0:sequence_lenght-1]
        '''
        return image, complete_seq, complete_mask
datapipe.py 文件源码 项目:faststyle 作者: ghwatson 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_my_file_format(filename_queue, resize_shape=None):
    """Sets up part of the pipeline that takes elements from the filename queue
    and turns it into a tf.Tensor of a batch of images.

    :param filename_queue:
        tf.train.string_input_producer object
    :param resize_shape:
        2 element list defining the shape to resize images to.
    """
    reader = tf.TFRecordReader()
    key, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example, features={
            'image/encoded': tf.FixedLenFeature([], tf.string),
            'image/height': tf.FixedLenFeature([], tf.int64),
            'image/channels': tf.FixedLenFeature([], tf.int64),
            'image/width': tf.FixedLenFeature([], tf.int64)})
    example = tf.image.decode_jpeg(features['image/encoded'], 3)
    processed_example = preprocessing(example, resize_shape)
    return processed_example
__init__.py 文件源码 项目:yolo-tf 作者: ruiminshen 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def decode_image_objects(paths):
    with tf.name_scope(inspect.stack()[0][3]):
        with tf.name_scope('parse_example'):
            reader = tf.TFRecordReader()
            _, serialized = reader.read(tf.train.string_input_producer(paths))
            example = tf.parse_single_example(serialized, features={
                'imagepath': tf.FixedLenFeature([], tf.string),
                'imageshape': tf.FixedLenFeature([3], tf.int64),
                'objects': tf.FixedLenFeature([2], tf.string),
            })
        imagepath = example['imagepath']
        objects = example['objects']
        with tf.name_scope('decode_objects'):
            objects_class = tf.decode_raw(objects[0], tf.int64, name='objects_class')
            objects_coord = tf.decode_raw(objects[1], tf.float32)
            objects_coord = tf.reshape(objects_coord, [-1, 4], name='objects_coord')
        with tf.name_scope('load_image'):
            imagefile = tf.read_file(imagepath)
            image = tf.image.decode_jpeg(imagefile, channels=3)
    return image, example['imageshape'], objects_class, objects_coord
read_data.py 文件源码 项目:CellDetection 作者: quqixun 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def decode_record(filename_queue, patch_size,
                  channel_num=3):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'image': tf.FixedLenFeature([], tf.string),
        })

    img = tf.decode_raw(features['image'], tf.uint8)
    img = tf.reshape(img, [patch_size, patch_size, channel_num])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)

    return img, label
big_input.py 文件源码 项目:Automatic_Speech_Recognition 作者: zzw922cn 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def read(filename_queue, feature_num=2, dtypes=[list, int]):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  feature_dict={}
  for i in range(feature_num):
    # here, only three data types are allowed: tf.float32, tf.int64, tf.string
    if dtypes[i] is int:
      feature_dict['feature'+str(i+1)]=tf.FixedLenFeature([], tf.int64)
    else:
      feature_dict['feature'+str(i+1)]=tf.FixedLenFeature([], tf.string)
  features = tf.parse_single_example(
      serialized_example,
      features=feature_dict)
  return features

#======================================================================================
## test code
test2.py 文件源码 项目:neuro-stereo 作者: lugu 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
          'image_left': tf.FixedLenFeature([], tf.string),
          'image_right': tf.FixedLenFeature([], tf.string),
      })

  image_left = tf.decode_raw(features['image_left'], tf.uint8)
  image_right = tf.decode_raw(features['image_right'], tf.uint8)
  width = 960
  height = 540
  depth = 4
  image_left.set_shape([width*height*depth])
  image_right.set_shape([width*height*depth])

  return image_left, image_right
data_pipeline.py 文件源码 项目:hdrnet 作者: google 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _parse_example(self, serialized):
    """Unpack a serialized example to Tensor."""
    feats = self._get_data_features()
    sz_feats = self._get_sz_features()
    for s in sz_feats:
      feats[s] = sz_feats[s]
    sample = tf.parse_single_example(serialized, features=feats)

    data = {}
    for i, f in enumerate(self.FEATURES):
      s = tf.to_int32(sample[f+'_sz'])

      data[f] = tf.decode_raw(sample[f], self.dtypes[f], name='decode_{}'.format(f))
      data[f] = tf.reshape(data[f], s)

    return data
model.py 文件源码 项目:streetview 作者: ydnaandy123 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
                'image_raw': tf.FixedLenFeature([], tf.string),
            })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape(128 * 128 * 3)
    image = tf.reshape(image, [128, 128, 3])

    image = tf.cast(image, tf.float32) * (2. / 255) - 1.

    return image
model.py 文件源码 项目:streetview 作者: ydnaandy123 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_and_decode_with_labels(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
                'image_raw': tf.FixedLenFeature([], tf.string),
                'label' : tf.FixedLenFeature([], tf.int64)
            })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape(128 * 128 * 3)
    image = tf.reshape(image, [128, 128, 3])

    image = tf.cast(image, tf.float32) * (2. / 255) - 1.

    label = tf.cast(features['label'], tf.int32)

    return image, label
inputs.py 文件源码 项目:num-seq-recognizer 作者: gmlove 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def batches(data_file_path, max_number_length, batch_size, size,
            num_preprocess_threads=1, is_training=True, channels=1):
  filename_queue = tf.train.string_input_producer([data_file_path])
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
    serialized_example,
    features={
      'image_png': tf.FixedLenFeature([], tf.string),
      'label': tf.FixedLenFeature([max_number_length], tf.int64),
      'length': tf.FixedLenFeature([1], tf.int64),
      'bbox': tf.FixedLenFeature([4], tf.int64),
    })
  image, bbox, label, length = features['image_png'], features['bbox'], features['label'], features['length']
  bbox = tf.cast(bbox, tf.int32)
  dequeued_data = []
  for i in range(num_preprocess_threads):
    dequeued_img = tf.image.decode_png(image, channels)
    dequeued_img = resize_image(dequeued_img, bbox, is_training, size, channels)
    dequeued_data.append([dequeued_img, tf.one_hot(length - 1, max_number_length)[0], tf.one_hot(label, 11)])

  return tf.train.batch_join(dequeued_data, batch_size=batch_size, capacity=batch_size * 3)


问题


面经


文章

微信
公众号

扫码关注公众号