python类random_crop()的实例源码

retrain.py 文件源码 项目:tensorflow-prebuilt-classifier 作者: recursionbane 项目源码 文件源码 阅读 140 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
tf_retrain.py 文件源码 项目:image_recognition 作者: tue-robotics 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
cifar_input.py 文件源码 项目:revnet-public 作者: renmengye 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cifar_tf_preprocess(random_crop=True, random_flip=True, whiten=True):
  image_size = 32
  inp = tf.placeholder(tf.float32, [image_size, image_size, 3])
  image = inp
  # image = tf.cast(inp, tf.float32)
  if random_crop:
    log.info("Apply random cropping")
    image = tf.image.resize_image_with_crop_or_pad(inp, image_size + 4,
                                                   image_size + 4)
    image = tf.random_crop(image, [image_size, image_size, 3])
  if random_flip:
    log.info("Apply random flipping")
    image = tf.image.random_flip_left_right(image)
  # Brightness/saturation/constrast provides small gains .2%~.5% on cifar.
  # image = tf.image.random_brightness(image, max_delta=63. / 255.)
  # image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
  # image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
  if whiten:
    log.info("Apply whitening")
    image = tf.image.per_image_whitening(image)
  return inp, image
retrain.py 文件源码 项目:tensorflow-image-classifier 作者: burliEnterprises 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
retrain.py 文件源码 项目:oversight 作者: hebenon 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
preprocessing.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _distort_image(self, image):
    """Distort one image for training a network.

    Adopted the standard data augmentation scheme that is widely used for
    this dataset: the images are first zero-padded with 4 pixels on each side,
    then randomly cropped to again produce distorted images; half of the images
    are then horizontally mirrored.

    Args:
      image: input image.
    Returns:
      distored image.
    """
    image = tf.image.resize_image_with_crop_or_pad(
        image, self.height + 8, self.width + 8)
    distorted_image = tf.random_crop(image,
                                     [self.height, self.width, self.depth])
    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)
    if self.summary_verbosity >= 3:
      tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
    return distorted_image
preprocess.py 文件源码 项目:deep_learning_study 作者: jowettcz 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def pre_process_data(image,training):
    if training:
        image = tf.random_crop(image,size=[img_size_cropped,img_size_cropped,cifar10.num_channels])

        image = tf.image.flip_left_right(image)
        image = tf.image.random_hue(image)
        image = tf.image.random_contrast(image)
        image = tf.image.random_saturation(image)
        image = tf.image.random_brightness(image)

        image = tf.maximum(image,1.0)
        image = tf.minimum(image,0.0)
    else:
        #for testing image
        image = tf.image.resize_image_with_crop_or_pad(image,img_size_cropped,img_size_cropped);

    return image
retrain.py 文件源码 项目:powerai-transfer-learning 作者: IBM 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
data_class.py 文件源码 项目:traffic_video_analysis 作者: polltooh 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def distort_op(self, image_tensor):
        """ copied from tensorflow cifar10 tutorial"""
        # Randomly crop a [height, width] section of the image.
        distorted_image = tf.random_crop(image_tensor, [self.shape[0],self.shape[1], self.channels])

        # Randomly flip the image horizontally.
        distorted_image = tf.image.random_flip_left_right(distorted_image)

        # Because these operations are not commutative, consider randomizing
        # the order their operation.
        # distorted_image = tf.image.random_brightness(distorted_image,
        #                                      max_delta=63)
        # distorted_image = tf.image.random_contrast(distorted_image,
        #                                    lower=0.2, upper=1.8)

        return distorted_image
data_class.py 文件源码 项目:traffic_video_analysis 作者: polltooh 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def distort_op(self, image_tensor):
        """ copied from tensorflow cifar10 tutorial"""
        # Randomly crop a [height, width] section of the image.
        distorted_image = tf.random_crop(image_tensor, [self.shape[0],self.shape[1], self.channels])

        # Randomly flip the image horizontally.
        distorted_image = tf.image.random_flip_left_right(distorted_image)

        # Because these operations are not commutative, consider randomizing
        # the order their operation.
        # distorted_image = tf.image.random_brightness(distorted_image,
        #                                      max_delta=63)
        # distorted_image = tf.image.random_contrast(distorted_image,
        #                                    lower=0.2, upper=1.8)

        return distorted_image
retrain.py 文件源码 项目:inception-retrain 作者: Dataweekends 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
train.py 文件源码 项目:image-classification-tensorflow 作者: xuetsing 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
    """
    Brief:
        Whether any distortions are enabled, from the input flags.
    Args:
        flip_left_right: Boolean whether to randomly mirror images horizontally.
        random_crop: Integer percentage setting the total margin used around the
        crop box.
        random_scale: Integer percentage of how much to vary the scale by.
        random_brightness: Integer range to randomly multiply the pixel values by.
    Returns:
        Boolean value indicating whether any distortions should be applied.
    """
    return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
data_input.py 文件源码 项目:cnn_picture_gazebo 作者: liuyandong1988 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_batch(image, label, batch_size, crop_size):
        #??????
    distorted_image=tf.image.central_crop(image,33./37.)
    distorted_image = tf.random_crop(distorted_image, [crop_size, crop_size, 3])#????,???
# #     distorted_image = tf.image.random_flip_up_down(distorted_image)#??????
#     distorted_image = tf.image.random_brightness(distorted_image,max_delta=50)#????  
#     distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#?????  

    #??batch
    #shuffle_batch????capacity????shuttle??????????????????batch???capacity?????
    #?????????
    images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,
                                                 num_threads=4,capacity=50000,min_after_dequeue=10000)

    # ????
    #tf.image_summary('images', images)
    return images, tf.reshape(label_batch, [batch_size])

#?????????????get_batch??
retrain.py 文件源码 项目:tensorflow-yys 作者: ystyle 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
image_inputs.py 文件源码 项目:TF-FaceDetection 作者: mariolew 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def inputs(lists, image_shape, batch_size):

    filename_queue = tf.train.string_input_producer(lists, shuffle=True)
    reader = tf.TextLineReader()
    _, value = reader.read(filename_queue)
    image, label = read_my_file_format(value)
    image = tf.image.resize_images(image, [image_shape[0]+3, image_shape[1]+3])
    image = tf.random_crop(image, image_shape)
    label = tf.cast(label, tf.float32)

    image.set_shape(image_shape)
    # image = tf.image.random_flip_left_right(image)
    float_image = tf.image.per_image_whitening(image)

    min_after_dequeue = 1000
    capacity = min_after_dequeue+(2+1)*batch_size

    image_batch, label_batch = tf.train.shuffle_batch([float_image, label],
                                                    batch_size=batch_size,
                                                    capacity=capacity,
                                                    min_after_dequeue=min_after_dequeue)

    return image_batch, label_batch
image_inputs.py 文件源码 项目:TF-FaceDetection 作者: mariolew 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def inputs_for_test(lists, image_shape, batch_size):

    filename_queue = tf.train.string_input_producer(lists, shuffle=True)
    reader = tf.TextLineReader()
    _, value = reader.read(filename_queue)
    image, label = read_my_file_format(value)
    image = tf.image.resize_images(image, [image_shape[0], image_shape[1]])
    # image = tf.random_crop(image, image_shape)
    label = tf.cast(label, tf.float32)

    image.set_shape(image_shape)
    # image = tf.image.random_flip_left_right(image)
    float_image = tf.image.per_image_whitening(image)

    min_after_dequeue = 1000
    capacity = min_after_dequeue+(2+1)*batch_size

    image_batch, label_batch = tf.train.batch([float_image, label],
                                            batch_size=batch_size)

    return image_batch, label_batch
data.py 文件源码 项目:age-gender-classification 作者: yunsangq 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def distort_image(image, height, width):
    # Image processing for training the network. Note the many random
    # distortions applied to the image.

    distorted_image = tf.random_crop(image, [height, width, 3])

    # distorted_image = tf.image.resize_images(image, [height, width])

    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)

    # Because these operations are not commutative, consider randomizing
    # the order their operation.

    distorted_image = tf.image.random_brightness(distorted_image,
                                                 max_delta=63)

    distorted_image = tf.image.random_contrast(distorted_image,
                                               lower=0.2, upper=1.8)

    return distorted_image
training.py 文件源码 项目:document-classification 作者: nagelflorian 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
retrain_v2.py 文件源码 项目:inception-face-shape-classifier 作者: adonistio 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
data_augmentation.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def random_crop(image, crop_size, padding=None):
    """Randmly crop a image.

    Args:
        image: 3-D float Tensor of image
        crop_size:int/tuple, output image height, width, for deep network we prefer same width and height
        padding: int, padding use to restore original image size, padded with 0's

    Returns:
        3-D float Tensor of randomly flipped updown image used for training.
    """
    if isinstance(crop_size, int):
        crop_size = (crop_size, crop_size)
    oshape = np.shape(image)
    if padding:
        oshape = (oshape[0] + 2 * padding, oshape[1] + 2 * padding)
    npad = ((padding, padding), (padding, padding), (0, 0))
    modified_image = image
    if padding:
        modified_image = np.lib.pad(
            image, pad_width=npad, mode='constant', constant_values=0)
    nh = random.randint(0, oshape[0] - crop_size[0])
    nw = random.randint(0, oshape[1] - crop_size[1])
    modified_image = modified_image[nh:nh + crop_size[0], nw:nw + crop_size[1]]
    return modified_image
utils_data.py 文件源码 项目:iCaRL 作者: srebuffi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def read_data(prefix, labels_dic, mixing, files_from_cl):
    image_list = sorted(map(lambda x: os.path.join(prefix, x),
                        filter(lambda x: x.endswith('JPEG'), files_from_cl)))
    prefix2 = []

    for file_i in image_list:
        tmp = file_i.split(prefix+'/')[1].split("_")[0]
        prefix2.append(tmp)

    prefix2     = np.array(prefix2)
    labels_list = np.array([mixing[labels_dic[i]] for i in prefix2])

    assert(len(image_list) == len(labels_list))
    images             = tf.convert_to_tensor(image_list, dtype=tf.string)
    labels             = tf.convert_to_tensor(labels_list, dtype=tf.int32)
    input_queue        = tf.train.slice_input_producer([images, labels], shuffle=True, capacity=2000)
    image_file_content = tf.read_file(input_queue[0])
    label              = input_queue[1]
    image              = tf.image.resize_images(tf.image.decode_jpeg(image_file_content, channels=3), [256, 256])
    image              = tf.random_crop(image, [224, 224, 3])
    image              = tf.image.random_flip_left_right(image)

    return image, label
retrain.py 文件源码 项目:tensorflow-for-poets-2 作者: googlecodelabs 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
retrain.py 文件源码 项目:Embarrassingly-Parallel-Image-Classification 作者: Azure 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def get_preprocessing():
    def preprocessing_fn(image, output_height=224, output_width=224):
        ''' Resize the image and subtract "mean" RGB values '''
        _R_MEAN = 123.68
        _G_MEAN = 116.78
        _B_MEAN = 103.94
        #image = tf.expand_dims(image, 0)

        temp_dim = np.random.randint(175, 223)
        distorted_image = tf.random_crop(image, [output_height, output_width, 3])
        distorted_image = tf.expand_dims(distorted_image, 0)
        resized_image = tf.image.resize_bilinear(distorted_image, [output_height, output_width], align_corners=False)
        resized_image = tf.squeeze(resized_image)
        resized_image.set_shape([output_height, output_width, 3])
        resized_image = tf.image.random_flip_left_right(resized_image)

        image = tf.to_float(resized_image)
        return(mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN]))
    return(preprocessing_fn)
model.py 文件源码 项目:cyclegan 作者: 4Catalyzer 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def patch_discriminator(inputdisc, name="discriminator"):
    with tf.variable_scope(name):
        f = 4

        patch_input = tf.random_crop(inputdisc, [1, 70, 70, 3])
        o_c1 = layers.general_conv2d(patch_input, ndf, f, f, 2, 2,
                                     0.02, "SAME", "c1", do_norm="False",
                                     relufactor=0.2)
        o_c2 = layers.general_conv2d(o_c1, ndf * 2, f, f, 2, 2,
                                     0.02, "SAME", "c2", relufactor=0.2)
        o_c3 = layers.general_conv2d(o_c2, ndf * 4, f, f, 2, 2,
                                     0.02, "SAME", "c3", relufactor=0.2)
        o_c4 = layers.general_conv2d(o_c3, ndf * 8, f, f, 2, 2,
                                     0.02, "SAME", "c4", relufactor=0.2)
        o_c5 = layers.general_conv2d(
            o_c4, 1, f, f, 1, 1, 0.02, "SAME", "c5", do_norm=False,
            do_relu=False)

        return o_c5
retrain.py 文件源码 项目:kaggle-distracted-drivers-inceptionv3 作者: ckleban 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
cyclegan.py 文件源码 项目:ml_gans 作者: imironhead 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def build_batch_reader(paths_image, batch_size):
    """
    """
    file_name_queue = tf.train.string_input_producer(paths_image)

    reader_key, reader_val = tf.WholeFileReader().read(file_name_queue)

    # decode a raw input image
    image = tf.image.decode_jpeg(reader_val, channels=3)

    # to float32 and -1.0 ~ +1.0
    image = tf.cast(image, dtype=tf.float32) / 127.5 - 1.0

    # scale up to increase training data
    image = tf.image.resize_images(image, [264, 264])

    # crop to 256 x 256 for the model.
    # also, a batch need concreate image size
    image = tf.random_crop(image, size=[256, 256, 3])

    # random horizontal flipping to increase training data
    image = tf.image.random_flip_left_right(image)

    # create bacth
    return tf.train.batch(tensors=[image], batch_size=batch_size)
preprocessing.py 文件源码 项目:stuff 作者: yaroslavvb 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _distort_image(self, image):
    """Distort one image for training a network.

    Adopted the standard data augmentation scheme that is widely used for
    this dataset: the images are first zero-padded with 4 pixels on each side,
    then randomly cropped to again produce distorted images; half of the images
    are then horizontally mirrored.

    Args:
      image: input image.
    Returns:
      distored image.
    """
    image = tf.image.resize_image_with_crop_or_pad(
        image, self.height + 8, self.width + 8)
    distorted_image = tf.random_crop(image,
                                     [self.height, self.width, self.depth])
    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)
    if self.summary_verbosity >= 3:
      tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
    return distorted_image
retrain.py 文件源码 项目:Tensorflow-Image-Classification 作者: AxelAli 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
retrain.py 文件源码 项目:MachineLearningGoogleSeries 作者: TheCoinTosser 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))
retrain.py 文件源码 项目:ZOO-Attack 作者: huanzhang12 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))


问题


面经


文章

微信
公众号

扫码关注公众号