python类histogram_summary()的实例源码

flownetsymple.py 文件源码 项目:neuro-stereo 作者: lugu 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def conv_max_pool_2x2(x, conv_width, conv_height, in_depth, out_depth, name="conv"):

    with tf.name_scope(name) as scope:
        W_conv = weight_variable([conv_width, conv_height, in_depth, out_depth])
        b_conv = bias_variable([out_depth])
        h_conv = tf.nn.relu(conv2d(x, W_conv) + b_conv)
        h_pool = max_pool_2x2(h_conv)

    with tf.name_scope("summaries") as scope:

        # TIPS: to display the 32 convolution filters, re-arrange the
        # weigths to look like 32 images with a transposition.
        a = tf.reshape(W_conv, [conv_width * conv_height * in_depth, out_depth])
        b = tf.transpose(a)
        c = tf.reshape(b, [out_depth, conv_width, conv_height * in_depth, 1])
        conv_image = tf.image_summary(name + " filter", c, out_depth)

        # TIPS: by looking at the weights histogram, we can see the the
        # weigths are explosing or vanishing.
        W_conv_hist = tf.histogram_summary(name + " weights", W_conv)
        b_conv_hist = tf.histogram_summary(name + " biases", b_conv)

    return h_pool
nasm.py 文件源码 项目:variational-text-tensorflow 作者: carpedm20 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def build_encoder(self):
    """Inference Network. q(h|X)"""
    with tf.variable_scope("encoder"):
      q_cell = tf.nn.rnn_cell.LSTMCell(self.embed_dim, self.vocab_size)
      a_cell = tf.nn.rnn_cell.LSTMCell(self.embed_dim, self.vocab_size)

      l1 = tf.nn.relu(tf.nn.rnn_cell.linear(tf.expand_dims(self.x, 0), self.embed_dim, bias=True, scope="l1"))
      l2 = tf.nn.relu(tf.nn.rnn_cell.linear(l1, self.embed_dim, bias=True, scope="l2"))

      self.mu = tf.nn.rnn_cell.linear(l2, self.h_dim, bias=True, scope="mu")
      self.log_sigma_sq = tf.nn.rnn_cell.linear(l2, self.h_dim, bias=True, scope="log_sigma_sq")

      eps = tf.random_normal((1, self.h_dim), 0, 1, dtype=tf.float32)
      sigma = tf.sqrt(tf.exp(self.log_sigma_sq))

      _ = tf.histogram_summary("mu", self.mu)
      _ = tf.histogram_summary("sigma", sigma)

      self.h = self.mu + sigma * eps
nvdm.py 文件源码 项目:variational-text-tensorflow 作者: carpedm20 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_encoder(self):
    """Inference Network. q(h|X)"""
    with tf.variable_scope("encoder"):
      self.l1_lin = linear(tf.expand_dims(self.x, 0), self.embed_dim, bias=True, scope="l1")
      self.l1 = tf.nn.relu(self.l1_lin)

      self.l2_lin = linear(self.l1, self.embed_dim, bias=True, scope="l2")
      self.l2 = tf.nn.relu(self.l2_lin)

      self.mu = linear(self.l2, self.h_dim, bias=True, scope="mu")
      self.log_sigma_sq = linear(self.l2, self.h_dim, bias=True, scope="log_sigma_sq")

      self.eps = tf.random_normal((1, self.h_dim), 0, 1, dtype=tf.float32)
      self.sigma = tf.sqrt(tf.exp(self.log_sigma_sq))

      self.h = tf.add(self.mu, tf.mul(self.sigma, self.eps))

      _ = tf.histogram_summary("mu", self.mu)
      _ = tf.histogram_summary("sigma", self.sigma)
      _ = tf.histogram_summary("h", self.h)
      _ = tf.histogram_summary("mu + sigma", self.mu + self.sigma)
cifar10.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  # tf.histogram_summary(tensor_name + '/activations', x)
  tf.summary.histogram(tensor_name + '/activations', x)
  # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
  tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
cifar10.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  # tf.histogram_summary(tensor_name + '/activations', x)
  tf.summary.histogram(tensor_name + '/activations', x)
  # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
  tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
trainer.py 文件源码 项目:how_to_convert_text_to_images 作者: llSourcell 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def define_summaries(self):
        '''Helper function for init_opt'''
        all_sum = {'g': [], 'd': [], 'hr_g': [], 'hr_d': [], 'hist': []}
        for k, v in self.log_vars:
            if k.startswith('g'):
                all_sum['g'].append(tf.scalar_summary(k, v))
            elif k.startswith('d'):
                all_sum['d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_g'):
                all_sum['hr_g'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_d'):
                all_sum['hr_d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hist'):
                all_sum['hist'].append(tf.histogram_summary(k, v))

        self.g_sum = tf.merge_summary(all_sum['g'])
        self.d_sum = tf.merge_summary(all_sum['d'])
        self.hr_g_sum = tf.merge_summary(all_sum['hr_g'])
        self.hr_d_sum = tf.merge_summary(all_sum['hr_d'])
        self.hist_sum = tf.merge_summary(all_sum['hist'])
logistic_regression_visual.py 文件源码 项目:DeepLearning 作者: STHSF 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def add_layers(inputs, in_size, out_size, layer_name, keep_prob, activation_function=None):

    # add one more layer and return the output of this layer
    weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    wx_plus_b = tf.matmul(inputs, weights) + biases

    # here to dropout
    # ? wx_plus_b ?drop?????
    # keep_prob ??????drop?????? sess.run ? feed
    wx_plus_b = tf.nn.dropout(wx_plus_b, keep_prob)

    if activation_function is None:
        outputs = wx_plus_b
    else:
        outputs = activation_function(wx_plus_b)

    tf.histogram_summary(layer_name + '/outputs', outputs)

    return outputs
tfbasemodel.py 文件源码 项目:Supply-demand-forecasting 作者: LevinJ 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def nn_layer_(self,input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
        """Reusable code for making a simple neural net layer.
        It does a matrix multiply, bias add, and then uses relu to nonlinearize.
        It also sets up name scoping so that the resultant graph is easy to read,
        and adds a number of summary ops.
        """
        # Adding a name scope ensures logical grouping of the layers in the graph.
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                weights = self.weight_variable([input_dim, output_dim])
                self.variable_summaries(weights, layer_name + '/weights')
            with tf.name_scope('biases'):
                biases = self.bias_variable([output_dim])
                self.variable_summaries(biases, layer_name + '/biases')
            with tf.name_scope('Wx_plus_b'):
                preactivate = tf.matmul(input_tensor, weights) + biases
                tf.histogram_summary(layer_name + '/pre_activations', preactivate)               
            activations = act(preactivate, 'activation')
            tf.histogram_summary(layer_name + '/activations', activations)

        return activations
clock_model.py 文件源码 项目:deep-time-reading 作者: felixduvallet 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _activation_summary(x):
    """Helper to create summaries for activations.

    Creates a summary that provides a histogram of activations.
    Creates a summary that measure the sparsity of activations.

    Args:
      x: Tensor
    Returns:
      nothing
    """
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    tf.histogram_summary(tensor_name + '/activations', x)
    tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
ranknet.py 文件源码 项目:tfranknet 作者: mzhang001 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _setup_training(self):
        """
        Set up a data flow graph for fine tuning
        """
        layer_num = self.layer_num
        act_func = ACTIVATE_FUNC[self.activate_func]
        sigma = self.sigma
        lr = self.learning_rate
        weights = self.weights
        biases = self.biases
        data1, data2 = self.data1, self.data2
        batch_size = self.batch_size
        optimizer = OPTIMIZER[self.optimizer]
        with tf.name_scope("training"):
            s1 = self._obtain_score(data1, weights, biases, act_func, "1")
            s2 = self._obtain_score(data2, weights, biases, act_func, "2")
            with tf.name_scope("cost"):
                sum_cost = tf.reduce_sum(tf.log(1 + tf.exp(-sigma*(s1-s2))))
                self.cost = cost = sum_cost / batch_size
        self.optimize = optimizer(lr).minimize(cost)

        for n in range(layer_num-1):
            tf.histogram_summary("weight"+str(n), weights[n])
            tf.histogram_summary("bias"+str(n), biases[n])
        tf.scalar_summary("cost", cost)
cifar10.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
cifar10.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
cifar10.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
trainer.py 文件源码 项目:StackGAN 作者: hanzhanggit 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def define_summaries(self):
        '''Helper function for init_opt'''
        all_sum = {'g': [], 'd': [], 'hr_g': [], 'hr_d': [], 'hist': []}
        for k, v in self.log_vars:
            if k.startswith('g'):
                all_sum['g'].append(tf.scalar_summary(k, v))
            elif k.startswith('d'):
                all_sum['d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_g'):
                all_sum['hr_g'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_d'):
                all_sum['hr_d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hist'):
                all_sum['hist'].append(tf.histogram_summary(k, v))

        self.g_sum = tf.merge_summary(all_sum['g'])
        self.d_sum = tf.merge_summary(all_sum['d'])
        self.hr_g_sum = tf.merge_summary(all_sum['hr_g'])
        self.hr_d_sum = tf.merge_summary(all_sum['hr_d'])
        self.hist_sum = tf.merge_summary(all_sum['hist'])
model.py 文件源码 项目:web_page_classification 作者: yuhui-lin 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _activation_summary(self, x):
        """Helper to create summaries for activations.
        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.
        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        # Error: these summaries cause high classifier error!!!
        # All inputs to node MergeSummary/MergeSummary must be from the same frame.

        # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name)
        # tf.histogram_summary(tensor_name + '/activations', x)
        # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
model.py 文件源码 项目:sentiment_lstm 作者: wenjiesha 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def Train(self,
            loss,
            learning_rate,
            clip_value_min,
            clip_value_max,
            name='training'):
    tf.scalar_summary(':'.join([name, loss.op.name]), loss)
    optimizer = tf.train.AdagradOptimizer(learning_rate)
    grads_and_vars = optimizer.compute_gradients(loss)

    clipped_grads_and_vars = [
        (tf.clip_by_value(g, clip_value_min, clip_value_max), v)
        for g, v in grads_and_vars
    ]

    for g, v in clipped_grads_and_vars:
      _ = tf.histogram_summary(':'.join([name, v.name]), v)
      _ = tf.histogram_summary('%s: gradient for %s' % (name, v.name), g)

    train_op = optimizer.apply_gradients(clipped_grads_and_vars)

    return train_op
base_model.py 文件源码 项目:tensorflow-ram 作者: qingzew 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _activation_summary(self, x):
        """Helper to create summaries for activations.

        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.

        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        tensor_name = re.sub('%s_[0-9]*/' % 'tower', '', x.op.name)
        tf.histogram_summary(tensor_name + '/activations', x)
        tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
model.py 文件源码 项目:various_residual_networks 作者: yuhui-lin 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _activation_summary(self, x):
        """Helper to create summaries for activations.
        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.
        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        # Error: these summaries cause high classifier error!!!
        # All inputs to node MergeSummary/MergeSummary must be from the same frame.

        # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name)
        # tf.histogram_summary(tensor_name + '/activations', x)
        # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
convNet.py 文件源码 项目:adascan_public 作者: amlankar 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def fc_layer(self, bottom, name):
        with tf.variable_scope(name) as scope:
            shape = bottom.get_shape().as_list()
            dim = 1
            for d in shape[1:]:
                dim *= d
            x = tf.reshape(bottom, [-1, dim])

            with tf.device('/cpu:0'):
                weights = self.get_fc_weight(name)
                biases = self.get_fc_bias(name)

            # Fully connected layer. Note that the '+' operation automatically
            # broadcasts the biases.
            fc = tf.nn.bias_add(tf.matmul(x, weights), biases)
            #tf.histogram_summary('adascan/'+name+'_activations', fc)
            #tf.histogram_summary('adascan/'+name+'_weights', weights)
            scope.reuse_variables()
            return fc
lstm_model.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def add_optimizer(self):
        self.global_step = tf.Variable(0, trainable=False)

        learning_rate = tf.train.exponential_decay(0.01, self.global_step, 50,
                                   0.1, staircase=True)

        optimizer = tf.train.GradientDescentOptimizer(learning_rate)
        gradients = optimizer.compute_gradients(self.loss)

        self.apply_gradient_op = optimizer.apply_gradients(gradients, self.global_step)

        for var in tf.trainable_variables():
            tf.histogram_summary(var.op.name, var)

        for grad, var in gradients:
            if grad is not None:
                tf.histogram_summary(var.op.name + '/gradients', grad)

        return self.apply_gradient_op
cnn_model_noBN.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def add_conv_layer(self, scope_name, layer_input, filter_size, input_channels,
                       output_channels, padding='SAME', should_init_wb=True):
        with tf.variable_scope(scope_name):
            weights_shape = filter_size + [input_channels, output_channels]
            initial_weights, initial_bias = self.__get_init_params(scope_name, should_init_wb)
            self.total_weights += weights_shape[0] * weights_shape[1] * weights_shape[2] * weights_shape[3]
            self.logger.info('Weight shape:{} for scope:{}'.format(weights_shape, tf.get_variable_scope().name))
            conv_weights = self.__get_variable('weights', weights_shape, tf.float32,
                                               initializer=initial_weights)

            tf.scalar_summary(scope_name + '/weight_sparsity', tf.nn.zero_fraction(conv_weights))
            tf.histogram_summary(scope_name + '/weights', conv_weights)

            conv = tf.nn.conv2d(layer_input, conv_weights,
                                strides=[1, 1, 1, 1], padding=padding)

            conv_biases = self.__get_variable('biases', [output_channels], tf.float32,
                                                         initializer=initial_bias)

            layer_output = tf.nn.relu(tf.nn.bias_add(conv, conv_biases))

            return layer_output
summary_helper.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def add_activation_summary(x):
    """Helper to create summaries for activations.

    Creates a summary that provides a histogram of activations.
    Creates a summary that measure the sparsity of activations.

    Args:
      x: Tensor
    Returns:
      nothing
    """
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.

    tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    tf.histogram_summary(tensor_name + '/activations', x)
    tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
cifar10.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
deepSpeech_train.py 文件源码 项目:deepSpeech 作者: fordDeepDSP 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def add_summaries(summaries, learning_rate, grads):
    """ Add summary ops"""

    # Track quantities for Tensorboard display
    summaries.append(tf.scalar_summary('learning_rate', learning_rate))
    # Add histograms for gradients.
    for grad, var in grads:
        if grad is not None:
            summaries.append(
                tf.histogram_summary(var.op.name +
                                     '/gradients', grad))
    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
        summaries.append(tf.histogram_summary(var.op.name, var))

    # Build the summary operation from the last tower summaries.
    summary_op = tf.merge_summary(summaries)
    return summary_op
fcn8_vgg.py 文件源码 项目:deep_fcn 作者: guojiyao 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def _activation_summary(x):
    """Helper to create summaries for activations.

    Creates a summary that provides a histogram of activations.
    Creates a summary that measure the sparsity of activations.

    Args:
      x: Tensor
    Returns:
      nothing
    """
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    tensor_name = x.op.name
    # tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    tf.histogram_summary(tensor_name + '/activations', x)
    tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
model_deploy.py 文件源码 项目:shuttleNet 作者: shiyemin 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _add_gradients_summaries(grads_and_vars):
  """Add histogram summaries to gradients.

  Note: The summaries are also added to the SUMMARIES collection.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The _list_ of the added summaries for grads_and_vars.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, tf.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(tf.histogram_summary(var.op.name + ':gradient',
                                            grad_values))
      summaries.append(tf.histogram_summary(var.op.name + ':gradient_norm',
                                            tf.global_norm([grad_values])))
    else:
      tf.logging.info('Var %s has no gradient', var.op.name)
  return summaries
model_deploy.py 文件源码 项目:Embarrassingly-Parallel-Image-Classification 作者: Azure 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _add_gradients_summaries(grads_and_vars):
  """Add histogram summaries to gradients.

  Note: The summaries are also added to the SUMMARIES collection.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The _list_ of the added summaries for grads_and_vars.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, tf.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(tf.histogram_summary(var.op.name + ':gradient',
                                            grad_values))
      summaries.append(tf.histogram_summary(var.op.name + ':gradient_norm',
                                            tf.global_norm([grad_values])))
    else:
      tf.logging.info('Var %s has no gradient', var.op.name)
  return summaries
region_proposal.py 文件源码 项目:lstm-rcnn-pedestrian-detection 作者: buffer51 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def create_train_summaries(learning_rate, clas_loss, reg_loss, rpn_loss, clas_accuracy, clas_positive_percentage, clas_positive_accuracy, VGG16D_activations, clas_activations):
    with tf.name_scope('train'):
        learning_rate_summary = tf.scalar_summary('learning_rate', learning_rate)

        loss_clas_summary = tf.scalar_summary('loss/clas', clas_loss)
        loss_reg_summary = tf.scalar_summary('loss/reg', reg_loss)
        loss_rpn_summary = tf.scalar_summary('loss/rpn', rpn_loss)

        stat_accuracy_summary = tf.scalar_summary('stat/accuracy', clas_accuracy)
        stat_positive_percentage_summary = tf.scalar_summary('stat/positive_percentage', clas_positive_percentage)
        stat_positive_accuracy_summary = tf.scalar_summary('stat/positive_accuracy', clas_positive_accuracy)

        VGG16D_histogram = tf.histogram_summary('activations/VGG16D', VGG16D_activations)
        clas_histogram = tf.histogram_summary('activations/clas', clas_activations)

        return tf.merge_summary([learning_rate_summary, loss_clas_summary, loss_reg_summary, loss_rpn_summary, stat_accuracy_summary, stat_positive_percentage_summary, stat_positive_accuracy_summary, VGG16D_histogram, clas_histogram])
nasm.py 文件源码 项目:variational_inference 作者: carpeanon 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def build_encoder(self):
    """Inference Network. q(h|X)"""
    with tf.variable_scope("encoder"):
      q_cell = tf.nn.rnn_cell.LSTMCell(self.embed_dim, self.vocab_size)
      a_cell = tf.nn.rnn_cell.LSTMCell(self.embed_dim, self.vocab_size)

      l1 = tf.nn.relu(tf.nn.rnn_cell.linear(tf.expand_dims(self.x, 0), self.embed_dim, bias=True, scope="l1"))
      l2 = tf.nn.relu(tf.nn.rnn_cell.linear(l1, self.embed_dim, bias=True, scope="l2"))

      self.mu = tf.nn.rnn_cell.linear(l2, self.h_dim, bias=True, scope="mu")
      self.log_sigma_sq = tf.nn.rnn_cell.linear(l2, self.h_dim, bias=True, scope="log_sigma_sq")

      eps = tf.random_normal((1, self.h_dim), 0, 1, dtype=tf.float32)
      sigma = tf.sqrt(tf.exp(self.log_sigma_sq))

      _ = tf.histogram_summary("mu", self.mu)
      _ = tf.histogram_summary("sigma", sigma)

      self.h = self.mu + sigma * eps
nvdm.py 文件源码 项目:variational_inference 作者: carpeanon 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def build_encoder(self):
    """Inference Network. q(h|X)"""
    with tf.variable_scope("encoder"):
      self.l1_lin = linear(tf.expand_dims(self.x, 0), self.embed_dim, bias=True, scope="l1")
      self.l1 = tf.nn.relu(self.l1_lin)

      self.l2_lin = linear(self.l1, self.embed_dim, bias=True, scope="l2")
      self.l2 = tf.nn.relu(self.l2_lin)

      self.mu = linear(self.l2, self.h_dim, bias=True, scope="mu")
      self.log_sigma_sq = linear(self.l2, self.h_dim, bias=True, scope="log_sigma_sq")

      self.eps = tf.random_normal((1, self.h_dim), 0, 1, dtype=tf.float32)
      self.sigma = tf.sqrt(tf.exp(self.log_sigma_sq))

      self.h = tf.add(self.mu, tf.mul(self.sigma, self.eps))

      _ = tf.histogram_summary("mu", self.mu)
      _ = tf.histogram_summary("sigma", self.sigma)
      _ = tf.histogram_summary("h", self.h)
      _ = tf.histogram_summary("mu + sigma", self.mu + self.sigma)


问题


面经


文章

微信
公众号

扫码关注公众号