python类TFRecordReader()的实例源码

_ds_examples.py 文件源码 项目:tensorfx 作者: TensorLab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def read_instances(self, count, shuffle, epochs):
    """Reads the data represented by this DataSource using a TensorFlow reader.

    Arguments:
      epochs: The number of epochs or passes over the data to perform.
    Returns:
      A tensor containing instances that are read.
    """
    # None implies unlimited; switch the value to None when epochs is 0.
    epochs = epochs or None

    options = None
    if self._compressed:
      options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)

    files = tf.train.match_filenames_once(self._path, name='files')
    queue = tf.train.string_input_producer(files, num_epochs=epochs, shuffle=shuffle,
                                           name='queue')
    reader = tf.TFRecordReader(options=options, name='reader')
    _, instances = reader.read_up_to(queue, count, name='read')

    return instances
model.py 文件源码 项目:streetview 作者: ydnaandy123 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
                'image_raw': tf.FixedLenFeature([], tf.string),
            })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape(128 * 128 * 3)
    image = tf.reshape(image, [128, 128, 3])

    image = tf.cast(image, tf.float32) * (2. / 255) - 1.

    return image
model.py 文件源码 项目:streetview 作者: ydnaandy123 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_and_decode_with_labels(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
                'image_raw': tf.FixedLenFeature([], tf.string),
                'label' : tf.FixedLenFeature([], tf.int64)
            })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape(128 * 128 * 3)
    image = tf.reshape(image, [128, 128, 3])

    image = tf.cast(image, tf.float32) * (2. / 255) - 1.

    label = tf.cast(features['label'], tf.int32)

    return image, label
inputs.py 文件源码 项目:num-seq-recognizer 作者: gmlove 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def batches(data_file_path, max_number_length, batch_size, size,
            num_preprocess_threads=1, is_training=True, channels=1):
  filename_queue = tf.train.string_input_producer([data_file_path])
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
    serialized_example,
    features={
      'image_png': tf.FixedLenFeature([], tf.string),
      'label': tf.FixedLenFeature([max_number_length], tf.int64),
      'length': tf.FixedLenFeature([1], tf.int64),
      'bbox': tf.FixedLenFeature([4], tf.int64),
    })
  image, bbox, label, length = features['image_png'], features['bbox'], features['label'], features['length']
  bbox = tf.cast(bbox, tf.int32)
  dequeued_data = []
  for i in range(num_preprocess_threads):
    dequeued_img = tf.image.decode_png(image, channels)
    dequeued_img = resize_image(dequeued_img, bbox, is_training, size, channels)
    dequeued_data.append([dequeued_img, tf.one_hot(length - 1, max_number_length)[0], tf.one_hot(label, 11)])

  return tf.train.batch_join(dequeued_data, batch_size=batch_size, capacity=batch_size * 3)
train.py 文件源码 项目:neuroimage-tensorflow 作者: corticometrics 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,features={
        'image_raw': tf.FixedLenFeature([], tf.string),
        'label_raw': tf.FixedLenFeature([], tf.string)})
    image  = tf.cast(tf.decode_raw(features['image_raw'], tf.int16), tf.float32)
    labels = tf.decode_raw(features['label_raw'], tf.int16)

    #PW 2017/03/03: Zero-center data here?
    image.set_shape([IMG_DIM*IMG_DIM*IMG_DIM])
    image  = tf.reshape(image, [IMG_DIM,IMG_DIM,IMG_DIM,1])

    labels.set_shape([IMG_DIM*IMG_DIM*IMG_DIM])
    labels  = tf.reshape(image, [IMG_DIM,IMG_DIM,IMG_DIM])

    # Dimensions (X, Y, Z, channles)
    return image, labels
util.py 文件源码 项目:sciencebeam-gym 作者: elifesciences 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_examples(input_files, shuffle, num_epochs=None):
  """Creates readers and queues for reading example protos."""
  files = []
  for e in input_files:
    for path in e.split(','):
      files.extend(file_io.get_matching_files(path))
  files = sorted(files)

  # Convert num_epochs == 0 -> num_epochs is None, if necessary
  num_epochs = num_epochs or None

  # Build a queue of the filenames to be read.
  filename_queue = tf.train.string_input_producer(files, num_epochs, shuffle)

  options = tf.python_io.TFRecordOptions(
      compression_type=tf.python_io.TFRecordCompressionType.GZIP)
  example_id, encoded_example = tf.TFRecordReader(options=options).read(
      filename_queue)

  return example_id, encoded_example
distribute_cake.py 文件源码 项目:deepcake 作者: ericyue 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          "label": tf.FixedLenFeature([], tf.float32),
          "categorical_features": tf.FixedLenFeature([CATEGORICAL_FEATURES_SIZE], tf.string),
          "continuous_features": tf.FixedLenFeature([CONTINUOUS_FEATURES_SIZE], tf.float32),
      })
  label = features["label"]
  continuous_features = features["continuous_features"]
  categorical_features = tf.cast(tf.string_to_hash_bucket(features["categorical_features"], BUCKET_SIZE), tf.float32)
  return label, tf.concat(0, [continuous_features, categorical_features])


# Read serialized examples from filename queue
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 76 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "predictions": tf.FixedLenFeature([self.num_classes], tf.float32),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]), features["predictions"]
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):
        """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

        Args:
          filename_queue: A tensorflow queue of filename locations.

        Returns:
          A tuple of video indexes, features, labels, and padding data.
        """
        reader = tf.TFRecordReader()
        _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

        # set the mapping from the fields to data types in the proto
        num_features = len(self.feature_names)
        assert num_features > 0, "self.feature_names is empty!"
        assert len(self.feature_names) == len(self.feature_sizes), \
            "length of feature_names (={}) != length of feature_sizes (={})".format( \
                len(self.feature_names), len(self.feature_sizes))

        feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                       "predictions": tf.FixedLenFeature([self.num_classes], tf.float32),
                       "labels": tf.VarLenFeature(tf.int64)}

        features = tf.parse_example(serialized_examples, features=feature_map)

        return features["predictions"]
writers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def prepare_writer(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue):

    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    contexts, features = tf.parse_single_sequence_example(
        serialized_example,
        context_features={
            "video_id": tf.FixedLenFeature([], tf.string),
            "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            "rgb": tf.FixedLenSequenceFeature([], dtype=tf.string),
            "audio": tf.FixedLenSequenceFeature([], dtype=tf.string),
        })

    # read ground truth labels
    labels = (tf.cast(
        tf.sparse_to_dense(contexts["labels"].values, (self.num_classes,), 1,
            validate_indices=False),
        tf.bool))

    rgbs, num_frames = self.get_video_matrix(features["rgb"], 1024, self.max_frames)
    audios, num_frames = self.get_video_matrix(features["audio"], 1024, self.max_frames)

    batch_video_ids = tf.expand_dims(contexts["video_id"], 0)
    batch_rgbs = tf.expand_dims(rgbs, 0)
    batch_audios = tf.expand_dims(audios, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)

    return batch_video_ids, batch_rgbs, batch_audios, batch_labels, batch_frames
datasets.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def reader(self):
    return tf.TFRecordReader()
tensorflow_file_reader.py 文件源码 项目:US-image-prediction 作者: ChengruiWu008 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_and_decode(filename):
    #???????????
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)   #????????
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'label': tf.FixedLenFeature([], tf.int64),
                                           'img_raw' : tf.FixedLenFeature([], tf.string),
                                       })
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    img = tf.reshape(img, [224, 224, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    return img, label
data_pipeline.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, fnames, shuffle=True, num_epochs=None):
    """Init from a list of filenames to enqueue.

    Args:
      fnames: list of .tfrecords filenames to enqueue.
      shuffle: if true, shuffle the list at each epoch
    """
    self._fnames = fnames
    self._fname_queue = tf.train.string_input_producer(
        self._fnames,
        capacity=1000,
        shuffle=shuffle,
        num_epochs=num_epochs,
        shared_name='input_files')
    self._reader = tf.TFRecordReader()

    # Read first record to initialize the shape parameters
    with tf.Graph().as_default():
      fname_queue = tf.train.string_input_producer(self._fnames)
      reader = tf.TFRecordReader()
      _, serialized = reader.read(fname_queue)
      shapes = self._parse_shape(serialized)
      dtypes = self._parse_dtype(serialized)

      config = tf.ConfigProto()
      config.gpu_options.allow_growth = True

      with tf.Session(config=config) as sess:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        self.shapes = sess.run(shapes)
        self.shapes = {k: self.shapes[k+'_sz'].tolist() for k in self.FEATURES}

        self.dtypes = sess.run(dtypes)
        self.dtypes = {k: REVERSE_TYPEMAP[self.dtypes[k+'_dtype'][0]] for k in self.FEATURES}

        coord.request_stop()
        coord.join(threads)
BaseImageData.py 文件源码 项目:kaggle-review 作者: daxiongshu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _parse(self, filename_queue):
        with tf.name_scope("parsing"):
            reader = tf.TFRecordReader()
            _, serialized_example = reader.read(filename_queue)
            features = tf.parse_single_example(serialized_example,
                features={'image':tf.FixedLenFeature([],tf.string),
                'label':tf.FixedLenFeature([],tf.int64)
                }
            )
            label = tf.cast(features['label'],tf.int32)
        return features, label
data.py 文件源码 项目:tfutils 作者: neuroailab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_input_op(self, fq, parsers):
        reader = tf.TFRecordReader()
        _, serialized_data = reader.read_up_to(fq, self.batch_size)
        return tf.parse_example(serialized_data, parsers)
udc_inputs.py 文件源码 项目:DualEncoder 作者: nachoaguadoc 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_input_fn(mode, input_files, batch_size, num_epochs):
  def input_fn():
    features = tf.contrib.layers.create_feature_spec_for_parsing(
        get_feature_columns(mode))

    feature_map = tf.contrib.learn.io.read_batch_features(
        file_pattern=input_files,
        batch_size=batch_size,
        features=features,
        reader=tf.TFRecordReader,
        randomize_input=True,
        num_epochs=num_epochs,
        queue_capacity=200000 + batch_size * 10,
        name="read_batch_features_{}".format(mode))

    # This is an ugly hack because of a current bug in tf.learn
    # During evaluation TF tries to restore the epoch variable which isn't defined during training
    # So we define the variable manually here
    if mode == tf.contrib.learn.ModeKeys.TRAIN:
      tf.get_variable(
        "read_batch_features_eval/file_name_queue/limit_epochs/epochs",
        initializer=tf.constant(0, dtype=tf.int64))

    if mode == tf.contrib.learn.ModeKeys.TRAIN:
      target = feature_map.pop("label")
    else:
      # In evaluation we have 10 classes (utterances).
      # The first one (index 0) is always the correct one
      target = tf.zeros([batch_size, 1], dtype=tf.int64)
    return feature_map, target
  return input_fn
data_loader.py 文件源码 项目:DL2W 作者: gauravmm 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def decode(filename_queue):
    # Create TFRecords reader
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    # Feature keys in TFRecords example
    features = tf.parse_single_example(serialized_example, features={
        'id': tf.FixedLenFeature([], tf.string),
        'vector': tf.FixedLenFeature([], tf.string),
        'label': tf.VarLenFeature(tf.int64)
    })

    video_id = features['id']

    # Decode vector and pad to fixed size
    vector = tf.decode_raw(features['vector'], tf.float32)
    vector = tf.reshape(vector, [-1, 300])
    vector = tf.pad(vector, [[0, 40 - tf.shape(vector)[0]], [0, 0]])
    vector.set_shape([40, 300])

    # Get label index
    label = tf.sparse_to_indicator(features['label'], 4716)
    label.set_shape([4716])
    label = tf.cast(label, tf.float32)

    return video_id, vector, label

# Creates input pipeline for tensorflow networks


问题


面经


文章

微信
公众号

扫码关注公众号