python类TFRecordReader()的实例源码

tfrecords_reader.py 文件源码 项目:AC-GAN 作者: jianpingliu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_example(self, filename_queue):
        # TFRecoard reader
        reader = tf.TFRecordReader()
        key, serialized_example = reader.read(filename_queue)

        # read data from serialized examples
        features = tf.parse_single_example(
            serialized_example,
            features={
                'label': tf.FixedLenFeature([], tf.int64),
                'image_raw': tf.FixedLenFeature([], tf.string)
            })
        label = features['label']
        image = features['image_raw']

        # decode raw image data as integers
        if self.image_format == 'jpeg':
            decoded_image = tf.image.decode_jpeg(
                image, channels=self.image_channels)
        else:
            decoded_image = tf.decode_raw(image, tf.uint8)

        return decoded_image, label
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):

    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
readers.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
DataReaders.py 文件源码 项目:TFExperiments 作者: gnperdue 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _tfrecord_to_graph_ops(self, num_epochs):
        with tf.variable_scope('tfrec_to_graph'):
            file_queue = tf.train.string_input_producer(
                self.filenames_list,
                name=self.name+'_file_queue',
                num_epochs=num_epochs
            )
            reader = tf.TFRecordReader(
                options=tf.python_io.TFRecordOptions(
                    compression_type=self.compression
                ), name=self.name+'_tfrec_reader'
            )
            _, tfrecord = reader.read(file_queue)

            features, targets = parse_mnist_tfrec(
                tfrecord, self.name, self.features_shape
            )
        return features, targets
read_tfrecord.py 文件源码 项目:tf-sr-zoo 作者: MLJejuCamp2017 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue, batch_size):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    feature = features()
    feature = tf.parse_single_example(
        serialized_example,
        features = feature,
        )
    hr_image = tf.decode_raw(feature['hr_image'], tf.uint8)
    height = tf.cast(feature['height'], tf.int32)
    width = tf.cast(feature['width'], tf.int32)
    print(height)
    image_shape = tf.stack([128, 128,3 ])
    hr_image = tf.reshape(hr_image, image_shape)
    hr_image = tf.image.random_flip_left_right(hr_image)
    hr_image = tf.image.random_contrast(hr_image, 0.5, 1.3)
    hr_images = tf.train.shuffle_batch([hr_image], batch_size = batch_size, capacity = 30,
                                      num_threads = 2,
                                        min_after_dequeue = 10)
    return hr_images
utils.py 文件源码 项目:AssociativeRetrieval 作者: jxwufan 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read(self, shuffle=True, num_epochs=None):
    with tf.name_scope('input'):
      reader = tf.TFRecordReader()
      filename_queue = tf.train.string_input_producer([self.filename], num_epochs=num_epochs)
      _, serialized_input = reader.read(filename_queue)
      inputs = tf.parse_single_example(serialized_input,
                                       features={
                                       'inputs_seq': tf.FixedLenFeature([self.seq_len * 2 + 3], tf.int64),
                                       'output': tf.FixedLenFeature([1], tf.int64)
                                       })
      inputs_seq = inputs['inputs_seq']
      output = inputs['output']
      min_after_dequeue = 100
      if shuffle:
        inputs_seqs, outputs = tf.train.shuffle_batch([inputs_seq, output], batch_size=self.batch_size, num_threads=2, capacity=min_after_dequeue + 3 * self.batch_size, min_after_dequeue=min_after_dequeue)
      else:
        inputs_seqs, outputs = tf.train.batch([inputs_seq, output], batch_size=self.batch_size)
      return inputs_seqs, outputs
readers.py 文件源码 项目:youtube-8m 作者: google 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
readers.py 文件源码 项目:Video-Classification 作者: boyaolin 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
captcha_input.py 文件源码 项目:dahoam2017 作者: KarimJedda 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label_raw': tf.FixedLenFeature([], tf.string),
      })
  image = tf.decode_raw(features['image_raw'], tf.int16)
  image.set_shape([IMAGE_HEIGHT * IMAGE_WIDTH])
  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
  reshape_image = tf.reshape(image, [IMAGE_HEIGHT, IMAGE_WIDTH, 1])
  label = tf.decode_raw(features['label_raw'], tf.uint8)
  label.set_shape([CHARS_NUM * CLASSES_NUM])
  reshape_label = tf.reshape(label, [CHARS_NUM, CLASSES_NUM])
  return tf.cast(reshape_image, tf.float32), tf.cast(reshape_label, tf.float32)
readers.py 文件源码 项目:Youtube-8M-WILLOW 作者: antoine77340 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
inputs.py 文件源码 项目:text-classification2 作者: yuhui-lin 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_and_decode_embedding(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'label': tf.FixedLenFeature(
                [], tf.int64),
            'sequence_raw': tf.FixedLenFeature(
                [], tf.string),
        })
    sequence = features['sequence_raw']

    # preprocess
    s_decode = tf.decode_raw(sequence, tf.int32)
    s_decode.set_shape([FLAGS.embed_length])

    # Convert label from a scalar uint8 tensor to an int32 scalar.
    label = tf.cast(features['label'], tf.int32)

    return s_decode, label
run.py 文件源码 项目:source_separation_ml_jeju 作者: hjkwon0609 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    features = tf.parse_single_example(serialized_example, features={
        'song_spec': tf.FixedLenFeature([], tf.string),
        'voice_spec': tf.FixedLenFeature([], tf.string),
        'mixed_spec': tf.FixedLenFeature([], tf.string)
        })

    song_spec = transform_spec_from_raw(features['song_spec'])
    voice_spec = transform_spec_from_raw(features['voice_spec'])
    mixed_spec = transform_spec_from_raw(features['mixed_spec'])

    input_spec = stack_spectrograms(mixed_spec)  # this will be the input

    target_spec = tf.concat([song_spec, voice_spec], axis=1) # target spec is going to be a concatenation of song_spec and voice_spec

    return input_spec, target_spec
reader.py 文件源码 项目:CycleGAN-TensorFlow 作者: vanhuyz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, tfrecords_file, image_size=256,
    min_queue_examples=1000, batch_size=1, num_threads=8, name=''):
    """
    Args:
      tfrecords_file: string, tfrecords file path
      min_queue_examples: integer, minimum number of samples to retain in the queue that provides of batches of examples
      batch_size: integer, number of images per batch
      num_threads: integer, number of preprocess threads
    """
    self.tfrecords_file = tfrecords_file
    self.image_size = image_size
    self.min_queue_examples = min_queue_examples
    self.batch_size = batch_size
    self.num_threads = num_threads
    self.reader = tf.TFRecordReader()
    self.name = name
readers.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
readers.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)
    if self.decode_zlib:
      reader = tf.TFRecordReader(options=opts)
    else:
      reader = tf.TFRecordReader()

    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    tf.add_to_collection("serialized_examples", serialized_examples)
    return self.prepare_serialized_examples(serialized_examples)
readers.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
readers.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)
    if self.decode_zlib:
      reader = tf.TFRecordReader(options=opts)
    else:
      reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    tf.add_to_collection("serialized_examples", serialized_examples)
    return self.prepare_serialized_examples(serialized_examples)
data_input.py 文件源码 项目:cnn_picture_gazebo 作者: liuyandong1988 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def decode_from_tfrecords(filename,num_epoch=None):
    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#???????????????????????????????????????
    reader=tf.TFRecordReader()
    _,serialized=reader.read(filename_queue)
    example=tf.parse_single_example(serialized,features={
        'height':tf.FixedLenFeature([],tf.int64),
        'width':tf.FixedLenFeature([],tf.int64),
        'nchannel':tf.FixedLenFeature([],tf.int64),
        'image':tf.FixedLenFeature([],tf.string),
        'label':tf.FixedLenFeature([],tf.int64)
    })
    label=tf.cast(example['label'], tf.int32)
    image=tf.decode_raw(example['image'],tf.uint8)
    image=tf.reshape(image,tf.pack([
        tf.cast(example['height'], tf.int32),
        tf.cast(example['width'], tf.int32),
        tf.cast(example['nchannel'], tf.int32)]))
    return image,label
read_tfrecord.py 文件源码 项目:tensorflow-yys 作者: ystyle 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_and_decode(filename, batch_size):
    # ???????????
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)  # ????????
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'img_raw': tf.FixedLenFeature([], tf.string),
        }
    )
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    print('xxxx: ', img.get_shape())
    img = tf.reshape(img, [512, 144, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    image_batch, label_batch = tf.train.batch([img, label],
                                              batch_size=batch_size,
                                              num_threads=64,
                                              capacity=2000)
    return image_batch, tf.reshape(label_batch, [batch_size])
ML_Final_Project.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
ML_Final_Project_LBP.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
demo.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
readers.py 文件源码 项目:Youtube8mdataset_kagglechallenge 作者: jasonlee27 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
graph_io_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_batch_randomized(self):
    batch_size = 17
    queue_capacity = 1234
    name = "my_batch"

    with tf.Graph().as_default() as g, self.test_session(graph=g) as sess:
      inputs = tf.contrib.learn.io.read_batch_examples(
          _VALID_FILE_PATTERN, batch_size,
          reader=tf.TFRecordReader, randomize_input=True,
          queue_capacity=queue_capacity, name=name)
      self.assertEqual("%s:1" % name, inputs.name)
      file_name_queue_name = "%s/file_name_queue" % name
      file_names_name = "%s/input" % file_name_queue_name
      example_queue_name = "%s/random_shuffle_queue" % name
      op_nodes = test_util.assert_ops_in_graph({
          file_names_name: "Const",
          file_name_queue_name: "FIFOQueue",
          "%s/read/TFRecordReader" % name: "TFRecordReader",
          example_queue_name: "RandomShuffleQueue",
          name: "QueueDequeueMany"
      }, g)
      self.assertEqual(
          set(_FILE_NAMES), set(sess.run(["%s:0" % file_names_name])[0]))
      self.assertEqual(
          queue_capacity, op_nodes[example_queue_name].attr["capacity"].i)
datapipe.py 文件源码 项目:faststyle 作者: ghwatson 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read_my_file_format(filename_queue, resize_shape=None):
    """Sets up part of the pipeline that takes elements from the filename queue
    and turns it into a tf.Tensor of a batch of images.

    :param filename_queue:
        tf.train.string_input_producer object
    :param resize_shape:
        2 element list defining the shape to resize images to.
    """
    reader = tf.TFRecordReader()
    key, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example, features={
            'image/encoded': tf.FixedLenFeature([], tf.string),
            'image/height': tf.FixedLenFeature([], tf.int64),
            'image/channels': tf.FixedLenFeature([], tf.int64),
            'image/width': tf.FixedLenFeature([], tf.int64)})
    example = tf.image.decode_jpeg(features['image/encoded'], 3)
    processed_example = preprocessing(example, resize_shape)
    return processed_example
__init__.py 文件源码 项目:yolo-tf 作者: ruiminshen 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def decode_image_objects(paths):
    with tf.name_scope(inspect.stack()[0][3]):
        with tf.name_scope('parse_example'):
            reader = tf.TFRecordReader()
            _, serialized = reader.read(tf.train.string_input_producer(paths))
            example = tf.parse_single_example(serialized, features={
                'imagepath': tf.FixedLenFeature([], tf.string),
                'imageshape': tf.FixedLenFeature([3], tf.int64),
                'objects': tf.FixedLenFeature([2], tf.string),
            })
        imagepath = example['imagepath']
        objects = example['objects']
        with tf.name_scope('decode_objects'):
            objects_class = tf.decode_raw(objects[0], tf.int64, name='objects_class')
            objects_coord = tf.decode_raw(objects[1], tf.float32)
            objects_coord = tf.reshape(objects_coord, [-1, 4], name='objects_coord')
        with tf.name_scope('load_image'):
            imagefile = tf.read_file(imagepath)
            image = tf.image.decode_jpeg(imagefile, channels=3)
    return image, example['imageshape'], objects_class, objects_coord
retrain.py 文件源码 项目:Embarrassingly-Parallel-Image-Classification 作者: Azure 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_dataset(dataset_name, dataset_dir, image_count, class_count, split_name):
    slim = tf.contrib.slim
    items_to_descriptions = {'image': 'A color image.',
                             'label': 'An integer in range(0, class_count)'}
    file_pattern = os.path.join(dataset_dir, '{}_{}_*.tfrecord'.format(dataset_name, split_name))
    reader = tf.TFRecordReader
    keys_to_features = {'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
                        'image/format': tf.FixedLenFeature((), tf.string, default_value='png'),
                        'image/class/label': tf.FixedLenFeature([], tf.int64,
                                                                default_value=tf.zeros([], dtype=tf.int64))}
    items_to_handlers = {'image': slim.tfexample_decoder.Image(),
                         'label': slim.tfexample_decoder.Tensor('image/class/label')}
    decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
    labels_to_names = read_label_file(dataset_dir)
    return(slim.dataset.Dataset(data_sources=file_pattern,
                                reader=reader,
                                decoder=decoder,
                                num_samples=image_count,
                                items_to_descriptions=items_to_descriptions,
                                num_classes=class_count,
                                labels_to_names=labels_to_names,
                                shuffle=True))
read_data.py 文件源码 项目:CellDetection 作者: quqixun 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def decode_record(filename_queue, patch_size,
                  channel_num=3):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'image': tf.FixedLenFeature([], tf.string),
        })

    img = tf.decode_raw(features['image'], tf.uint8)
    img = tf.reshape(img, [patch_size, patch_size, channel_num])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)

    return img, label
big_input.py 文件源码 项目:Automatic_Speech_Recognition 作者: zzw922cn 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read(filename_queue, feature_num=2, dtypes=[list, int]):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  feature_dict={}
  for i in range(feature_num):
    # here, only three data types are allowed: tf.float32, tf.int64, tf.string
    if dtypes[i] is int:
      feature_dict['feature'+str(i+1)]=tf.FixedLenFeature([], tf.int64)
    else:
      feature_dict['feature'+str(i+1)]=tf.FixedLenFeature([], tf.string)
  features = tf.parse_single_example(
      serialized_example,
      features=feature_dict)
  return features

#======================================================================================
## test code
test2.py 文件源码 项目:neuro-stereo 作者: lugu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
          'image_left': tf.FixedLenFeature([], tf.string),
          'image_right': tf.FixedLenFeature([], tf.string),
      })

  image_left = tf.decode_raw(features['image_left'], tf.uint8)
  image_right = tf.decode_raw(features['image_right'], tf.uint8)
  width = 960
  height = 540
  depth = 4
  image_left.set_shape([width*height*depth])
  image_right.set_shape([width*height*depth])

  return image_left, image_right


问题


面经


文章

微信
公众号

扫码关注公众号