python类zeros_initializer()的实例源码

model.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _initialize_combine_embedding_layer(self):
        with tf.variable_scope("combine_embedding_layer"):
            W = tf.get_variable(
                initializer=tf.contrib.layers.xavier_initializer(),
                shape=[
                    self._word_embedding_dim + self._char_rnn_encoder_hidden_dim * 2,
                    self._combined_embedding_dim
                ],
                name="weight"
            )
            b = tf.get_variable(
                initializer=tf.zeros_initializer(),
                shape=[self._combined_embedding_dim],
                name="bias"
            )

            return {
                "W": W,
                "b": b
            }
model.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _initialize_combine_embedding_layer(self):
        with tf.variable_scope("combine_embedding_layer"):
            W = tf.get_variable(
                initializer=tf.contrib.layers.xavier_initializer(),
                shape=[
                    self._word_embedding_dim + self._char_rnn_encoder_hidden_dim * 2,
                    self._combined_embedding_dim
                ],
                name="weight"
            )
            b = tf.get_variable(
                initializer=tf.zeros_initializer(),
                shape=[self._combined_embedding_dim],
                name="bias"
            )

            return {
                "W": W,
                "b": b
            }
model.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _initialize_combine_embedding_layer(self):
        with tf.variable_scope("combine_embedding_layer"):
            W = tf.get_variable(
                initializer=tf.contrib.layers.xavier_initializer(),
                shape=[
                    self._word_embedding_dim + self._char_rnn_encoder_hidden_dim * 2,
                    self._combined_embedding_dim
                ],
                name="weight"
            )
            b = tf.get_variable(
                initializer=tf.zeros_initializer(),
                shape=[self._combined_embedding_dim],
                name="bias"
            )

            return {
                "W": W,
                "b": b
            }
model.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _initialize_combine_embedding_layer(self):
        with tf.variable_scope("combine_embedding_layer"):
            W = tf.get_variable(
                initializer=tf.contrib.layers.xavier_initializer(),
                shape=[
                    self._word_embedding_dim + self._char_rnn_encoder_hidden_dim * 2,
                    self._combined_embedding_dim
                ],
                name="weight"
            )
            b = tf.get_variable(
                initializer=tf.zeros_initializer(),
                shape=[self._combined_embedding_dim],
                name="bias"
            )

            return {
                "W": W,
                "b": b
            }
model.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _initialize_combine_embedding_layer(self):
        with tf.variable_scope("combine_embedding_layer"):
            W = tf.get_variable(
                initializer=tf.contrib.layers.xavier_initializer(),
                shape=[
                    self._word_embedding_dim + self._char_rnn_encoder_hidden_dim * 2,
                    self._combined_embedding_dim
                ],
                name="weight"
            )
            b = tf.get_variable(
                initializer=tf.zeros_initializer(),
                shape=[self._combined_embedding_dim],
                name="bias"
            )

            return {
                "W": W,
                "b": b
            }
model.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _initialize_combine_embedding_layer(self):
        with tf.variable_scope("combine_embedding_layer"):
            W = tf.get_variable(
                initializer=tf.contrib.layers.xavier_initializer(),
                shape=[
                    self._word_embedding_dim + self._char_rnn_encoder_hidden_dim * 2,
                    self._combined_embedding_dim
                ],
                name="weight"
            )
            b = tf.get_variable(
                initializer=tf.zeros_initializer(),
                shape=[self._combined_embedding_dim],
                name="bias"
            )

            return {
                "W": W,
                "b": b
            }
logistic_regressor_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _logistic_regression_model_fn(features, targets):
  logits = tf.contrib.layers.linear(
      features,
      1,
      weights_initializer=tf.zeros_initializer,
      # Intentionally uses really awful initial values so that
      # AUC/precision/recall/etc will change meaningfully even on a toy dataset.
      biases_initializer=tf.constant_initializer(-10.0))
  predictions = tf.sigmoid(logits)
  loss = tf.contrib.losses.sigmoid_cross_entropy(logits, targets)
  train_op = tf.contrib.layers.optimize_loss(
      loss,
      tf.contrib.framework.get_global_step(),
      optimizer='Adagrad',
      learning_rate=0.1)
  return predictions, loss, train_op
logistic_regressor_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _logistic_regression_model_fn(features, labels):
  logits = tf.contrib.layers.linear(
      features,
      1,
      weights_initializer=tf.zeros_initializer,
      # Intentionally uses really awful initial values so that
      # AUC/precision/recall/etc will change meaningfully even on a toy dataset.
      biases_initializer=tf.constant_initializer(-10.0))
  predictions = tf.sigmoid(logits)
  loss = tf.contrib.losses.sigmoid_cross_entropy(logits, labels)
  train_op = tf.contrib.layers.optimize_loss(
      loss,
      tf.contrib.framework.get_global_step(),
      optimizer='Adagrad',
      learning_rate=0.1)
  return predictions, loss, train_op
nnutil.py 文件源码 项目:social-scene-understanding 作者: cvlab-epfl 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def normalization(inputs, epsilon=1e-3, has_shift=True, has_scale=True,
                  activation_fn=None, scope='normalization'):
  with tf.variable_scope(scope):
    inputs_shape = inputs.get_shape()
    inputs_rank = inputs_shape.ndims
    axis = list(range(inputs_rank - 1))
    mean, variance = tf.nn.moments(inputs, axis)

    shift, scale = None, None
    if has_shift:
      shift = tf.get_variable('shift',
                              shape=inputs_shape[-1:],
                              dtype=inputs.dtype,
                              initializer=tf.zeros_initializer)
    if has_scale:
      scale = tf.get_variable('scale',
                              shape=inputs_shape[-1:],
                              dtype=inputs.dtype,
                              initializer=tf.ones_initializer)
      x = tf.nn.batch_normalization(inputs, mean, variance, shift, scale, epsilon)
    return x if activation_fn is None else activation_fn(x)
began_model.py 文件源码 项目:Awesome-GANs 作者: kozistr 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def encoder(self, x, embedding, reuse=None):
        with tf.variable_scope("encoder", reuse=reuse):
            with slim.arg_scope([slim.conv2d],
                                stride=1, activation_fn=tf.nn.elu, padding="SAME",
                                weights_initializer=tf.contrib.layers.variance_scaling_initializer(),
                                weights_regularizer=slim.l2_regularizer(5e-4),
                                bias_initializer=tf.zeros_initializer()):
                x = slim.conv2d(x, embedding, 3)

                for i in range(self.conv_repeat_num):
                    channel_num = embedding * (i + 1)
                    x = slim.repeat(x, 2, slim.conv2d, channel_num, 3)
                    if i < self.conv_repeat_num - 1:
                        # Is using stride pooling more better method than max pooling?
                        # or average pooling
                        # x = slim.conv2d(x, channel_num, kernel_size=3, stride=2)  # sub-sampling
                        x = slim.avg_pool2d(x, kernel_size=2, stride=2)
                        # x = slim.max_pooling2d(x, 3, 2)

                x = tf.reshape(x, [-1, np.prod([8, 8, channel_num])])
        return x
began_model.py 文件源码 项目:Awesome-GANs 作者: kozistr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def decoder(self, z, embedding, reuse=None):
        with tf.variable_scope("decoder", reuse=reuse):
            with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                weights_initializer=tf.contrib.layers.variance_scaling_initializer(),
                                weights_regularizer=slim.l2_regularizer(5e-4),
                                bias_initializer=tf.zeros_initializer()):
                with slim.arg_scope([slim.conv2d], padding="SAME",
                                    activation_fn=tf.nn.elu, stride=1):
                    x = slim.fully_connected(z, 8 * 8 * embedding, activation_fn=None)
                    x = tf.reshape(x, [-1, 8, 8, embedding])

                    for i in range(self.conv_repeat_num):
                        x = slim.repeat(x, 2, slim.conv2d, embedding, 3)
                        if i < self.conv_repeat_num - 1:
                            x = resize_nn(x, 2)  # NN up-sampling

                    x = slim.conv2d(x, 3, 3, activation_fn=None)
        return x
3dgan_autoencoder.py 文件源码 项目:tf-3dgan 作者: meetshah1995 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def initialiseBiases():

    global biases
    zero_init = tf.zeros_initializer()

    biases['bg1'] = tf.get_variable("bg1", shape=[512], initializer=zero_init)
    biases['bg2'] = tf.get_variable("bg2", shape=[256], initializer=zero_init)
    biases['bg3'] = tf.get_variable("bg3", shape=[128], initializer=zero_init)
    biases['bg4'] = tf.get_variable("bg4", shape=[64], initializer=zero_init)
    biases['bg5'] = tf.get_variable("bg5", shape=[1], initializer=zero_init)

    biases['bd1'] = tf.get_variable("bd1", shape=[64], initializer=zero_init)
    biases['bd2'] = tf.get_variable("bd2", shape=[128], initializer=zero_init)
    biases['bd3'] = tf.get_variable("bd3", shape=[256], initializer=zero_init)
    biases['bd4'] = tf.get_variable("bd4", shape=[512], initializer=zero_init)    
    biases['bd5'] = tf.get_variable("bd5", shape=[1], initializer=zero_init) 

    return biases
3dgan_feature_matching.py 文件源码 项目:tf-3dgan 作者: meetshah1995 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def initialiseBiases():

    global biases
    zero_init = tf.zeros_initializer()

    biases['bg1'] = tf.get_variable("bg1", shape=[512], initializer=zero_init)
    biases['bg2'] = tf.get_variable("bg2", shape=[256], initializer=zero_init)
    biases['bg3'] = tf.get_variable("bg3", shape=[128], initializer=zero_init)
    biases['bg4'] = tf.get_variable("bg4", shape=[64], initializer=zero_init)
    biases['bg5'] = tf.get_variable("bg5", shape=[1], initializer=zero_init)

    biases['bd1'] = tf.get_variable("bd1", shape=[64], initializer=zero_init)
    biases['bd2'] = tf.get_variable("bd2", shape=[128], initializer=zero_init)
    biases['bd3'] = tf.get_variable("bd3", shape=[256], initializer=zero_init)
    biases['bd4'] = tf.get_variable("bd4", shape=[512], initializer=zero_init)    
    biases['bd5'] = tf.get_variable("bd5", shape=[1], initializer=zero_init) 

    return biases
3dgan.py 文件源码 项目:tf-3dgan 作者: meetshah1995 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def initialiseBiases():

    global biases
    zero_init = tf.zeros_initializer()

    biases['bg1'] = tf.get_variable("bg1", shape=[4*4*4*512], initializer=zero_init)
    biases['bg2'] = tf.get_variable("bg2", shape=[256], initializer=zero_init)
    biases['bg3'] = tf.get_variable("bg3", shape=[128], initializer=zero_init)
    biases['bg4'] = tf.get_variable("bg4", shape=[ 1 ], initializer=zero_init)

    biases['bd1'] = tf.get_variable("bd1", shape=[32], initializer=zero_init)
    biases['bd2'] = tf.get_variable("bd2", shape=[64], initializer=zero_init)
    biases['bd3'] = tf.get_variable("bd3", shape=[128], initializer=zero_init)
    biases['bd4'] = tf.get_variable("bd4", shape=[256], initializer=zero_init)    
    biases['bd5'] = tf.get_variable("bd5", shape=[1 ], initializer=zero_init) 

    return biases
3dgan_mit.py 文件源码 项目:tf-3dgan 作者: meetshah1995 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def initialiseBiases():

    global biases
    zero_init = tf.zeros_initializer()

    biases['bg1'] = tf.get_variable("bg1", shape=[512], initializer=zero_init)
    biases['bg2'] = tf.get_variable("bg2", shape=[256], initializer=zero_init)
    biases['bg3'] = tf.get_variable("bg3", shape=[128], initializer=zero_init)
    biases['bg4'] = tf.get_variable("bg4", shape=[64], initializer=zero_init)
    biases['bg5'] = tf.get_variable("bg5", shape=[1], initializer=zero_init)

    biases['bd1'] = tf.get_variable("bd1", shape=[64], initializer=zero_init)
    biases['bd2'] = tf.get_variable("bd2", shape=[128], initializer=zero_init)
    biases['bd3'] = tf.get_variable("bd3", shape=[256], initializer=zero_init)
    biases['bd4'] = tf.get_variable("bd4", shape=[512], initializer=zero_init)    
    biases['bd5'] = tf.get_variable("bd5", shape=[1], initializer=zero_init) 

    return biases
a3C.py 文件源码 项目:A3C 作者: go2sea 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def v(self):
        with tf.variable_scope('critic'):
            w_i = tf.random_uniform_initializer(0., 0.1)
            b_i = tf.zeros_initializer()
            with tf.variable_scope('dense1'):
                dense1 = dense(self.state_input, 100, [100], w_i, activation=tf.nn.relu6)
            with tf.variable_scope('dense2'):
                dense2 = dense(dense1, 1, [1], w_i, b_i, activation=None)
            return dense2

    # Note: We need 2 return value here: mu & sigma. So it is not suitable to use lazy_property.
a3C.py 文件源码 项目:A3C 作者: go2sea 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def a_prob(self):
        with tf.variable_scope('actor'):
            w_i = tf.random_uniform_initializer(0., 0.1)
            b_i = tf.zeros_initializer()
            with tf.variable_scope('dense1'):
                dense1 = dense(self.state_input, 200, None, w_i, b_i, activation=tf.nn.relu6)
            with tf.variable_scope('dense2'):
                dense2 = dense(dense1, self.action_dim, None, w_i, b_i, activation=tf.nn.softmax)
            return dense2
positional_cnn_deep_combine_chain_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def add_positional_embedding(self, model_input, num_frames, l2_penalty=1e-8):
    batch_size, max_frames, num_features = model_input.get_shape().as_list()
    positional_embedding = tf.get_variable("positional_embedding", dtype=tf.float32,
                                shape=[1, max_frames, num_features], 
                                initializer=tf.zeros_initializer(),
                                regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
    mask = tf.sequence_mask(lengths=num_frames, maxlen=max_frames, dtype=tf.float32)
    model_input_with_positional_embedding = tf.einsum("ijk,ij->ijk", model_input + positional_embedding, mask)
    return model_input_with_positional_embedding
skip_rnn_cells.py 文件源码 项目:skiprnn-2017-telecombcn 作者: imatge-upc 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def trainable_initial_state(self, batch_size):
        """
        Create a trainable initial state for the MultiSkipLSTMCell
        :param batch_size: number of samples per batch
        :return: list of SkipLSTMStateTuple
        """
        initial_states = []
        for idx in range(self._num_layers - 1):
            with tf.variable_scope('layer_%d' % (idx + 1)):
                with tf.variable_scope('initial_c'):
                    initial_c = rnn_ops.create_initial_state(batch_size, self._num_units[idx])
                with tf.variable_scope('initial_h'):
                    initial_h = rnn_ops.create_initial_state(batch_size, self._num_units[idx])
                initial_states.append(LSTMStateTuple(initial_c, initial_h))
        with tf.variable_scope('layer_%d' % self._num_layers):
            with tf.variable_scope('initial_c'):
                initial_c = rnn_ops.create_initial_state(batch_size, self._num_units[-1])
            with tf.variable_scope('initial_h'):
                initial_h = rnn_ops.create_initial_state(batch_size, self._num_units[-1])
            with tf.variable_scope('initial_update_prob'):
                initial_update_prob = rnn_ops.create_initial_state(batch_size, 1, trainable=False,
                                                                   initializer=tf.ones_initializer())
            with tf.variable_scope('initial_cum_update_prob'):
                initial_cum_update_prob = rnn_ops.create_initial_state(batch_size, 1, trainable=False,
                                                                       initializer=tf.zeros_initializer())
            initial_states.append(SkipLSTMStateTuple(initial_c, initial_h,
                                                            initial_update_prob, initial_cum_update_prob))
        return initial_states
skip_rnn_cells.py 文件源码 项目:skiprnn-2017-telecombcn 作者: imatge-upc 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def trainable_initial_state(self, batch_size):
        """
        Create a trainable initial state for the SkipGRUCell
        :param batch_size: number of samples per batch
        :return: SkipGRUStateTuple
        """
        with tf.variable_scope('initial_h'):
            initial_h = rnn_ops.create_initial_state(batch_size, self._num_units)
        with tf.variable_scope('initial_update_prob'):
            initial_update_prob = rnn_ops.create_initial_state(batch_size, 1, trainable=False,
                                                               initializer=tf.ones_initializer())
        with tf.variable_scope('initial_cum_update_prob'):
            initial_cum_update_prob = rnn_ops.create_initial_state(batch_size, 1, trainable=False,
                                                                   initializer=tf.zeros_initializer())
        return SkipGRUStateTuple(initial_h, initial_update_prob, initial_cum_update_prob)


问题


面经


文章

微信
公众号

扫码关注公众号