python类pad()的实例源码

special_fn.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def format_input_left_padding(inputs, **kwargs):
    static_shape = inputs.get_shape()
    if not static_shape or len(static_shape) != 4:
        raise ValueError(
            "Inputs to conv must have statically known rank 4. Shape: " + str(static_shape))
    dilation = (1, 1)
    assert kwargs['filter_size'] is not None
    filter_size = kwargs['filter_size']
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if "dilation" in kwargs:
        dilation_rate = kwargs["dilation"]
    assert filter_size[0] % 2 == 1 and filter_size[1] % 2 == 1
    height_padding = 2 * (filter_size[0] // 2) * dilation[0]
    cond_padding = tf.cond(
        tf.equal(tf.shape(inputs)[2], 1), lambda: tf.constant(0),
        lambda: tf.constant(2 * (filter_size[1] // 2) * dilation[1]))
    width_padding = 0 if static_shape[2] == 1 else cond_padding
    padding = [[0, 0], [height_padding, 0], [width_padding, 0], [0, 0]]
    inputs = tf.pad(inputs, padding)
    # Set middle two dimensions to None to prevent convolution from complaining
    inputs.set_shape([static_shape[0], None, None, static_shape[3]])
    kwargs["padding"] = "VALID"
    return inputs, kwargs
threepart_aligner.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def pad_up_to(vector, size, rank):
    length_diff = tf.reshape(size - tf.shape(vector)[1], shape=(1,))
    with tf.control_dependencies([tf.assert_non_negative(length_diff, data=(vector, size, tf.shape(vector)))]):
        padding = tf.reshape(tf.concat([[0, 0, 0], length_diff, [0,0]*(rank-1)], axis=0), shape=((rank+1), 2))
        return tf.pad(vector, padding, mode='constant')
seq2seq_aligner.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def pad_up_to(vector, size):
    rank = vector.get_shape().ndims - 1

    length_diff = tf.reshape(size - tf.shape(vector)[1], shape=(1,))
    with tf.control_dependencies([tf.assert_non_negative(length_diff, data=(vector, size, tf.shape(vector)))]):
        padding = tf.reshape(tf.concat([[0, 0, 0], length_diff, [0,0]*(rank-1)], axis=0), shape=((rank+1), 2))
        return tf.pad(vector, padding, mode='constant')
seq2seq_aligner.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def add_loss_op(self, result):
        logits = result.rnn_output
        with tf.control_dependencies([tf.assert_positive(tf.shape(logits)[1], data=[tf.shape(logits)])]):
            length_diff = tf.reshape(self.config.max_length - tf.shape(logits)[1], shape=(1,))
        padding = tf.reshape(tf.concat([[0, 0, 0], length_diff, [0, 0]], axis=0), shape=(3, 2))
        preds = tf.pad(logits, padding, mode='constant')

        # add epsilon to avoid division by 0
        preds = preds + 1e-5

        mask = tf.sequence_mask(self.output_length_placeholder, self.config.max_length, dtype=tf.float32)
        loss = tf.contrib.seq2seq.sequence_loss(preds, self.output_placeholder, mask)

        with tf.control_dependencies([tf.assert_non_negative(loss, data=[preds, mask], summarize=256*60*300)]):
            return tf.identity(loss)
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters = [1024, 1024, 1024],
            filter_sizes = [1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        cnn_output = slim.batch_norm(
            cnn_output,
            center=True,
            scale=True,
            is_training=FLAGS.train,
            scope=sub_scope+"cluster_bn")
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters = [1024, 1024, 1024],
            filter_sizes = [1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        cnn_output = slim.batch_norm(
            cnn_output,
            center=True,
            scale=True,
            is_training=FLAGS.train,
            scope=sub_scope+"cluster_bn")
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters=[1024,1024,1024],
            filter_sizes=[1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        cnn_output = slim.batch_norm(
            cnn_output,
            center=True,
            scale=True,
            is_training=FLAGS.train,
            scope=sub_scope+"cluster_bn")
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters=[1024,1024,1024],
            filter_sizes=[1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        cnn_output = slim.batch_norm(
            cnn_output,
            center=True,
            scale=True,
            is_training=FLAGS.train,
            scope=sub_scope+"cluster_bn")
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters = [1024, 1024, 1024],
            filter_sizes = [1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        cnn_output = slim.batch_norm(
            cnn_output,
            center=True,
            scale=True,
            is_training=FLAGS.train,
            scope=sub_scope+"cluster_bn")
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters = [1024, 1024, 1024],
            filter_sizes = [1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            sub_bias = tf.get_variable(sub_scope+"cnn-bias-len%d"%fs,
                                         shape=[nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter) + sub_bias)

        cnn_output = tf.concat(cnn_outputs, axis=2)
        cnn_output = slim.batch_norm(
            cnn_output,
            center=True,
            scale=True,
            is_training=FLAGS.train,
            scope=sub_scope+"cluster_bn")
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters=[1024, 1024, 1024],
            filter_sizes=[1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters=[1024, 1024, 1024],
            filter_sizes=[1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        return cnn_output, max_frames
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def cnn(self,
            model_input,
            l2_penalty=1e-8,
            num_filters = [1024, 1024, 1024],
            filter_sizes = [1,2,3],
            sub_scope="",
            **unused_params):
        max_frames = model_input.get_shape().as_list()[1]
        num_features = model_input.get_shape().as_list()[2]

        shift_inputs = []
        for i in range(max(filter_sizes)):
            if i == 0:
                shift_inputs.append(model_input)
            else:
                shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

        cnn_outputs = []
        for nf, fs in zip(num_filters, filter_sizes):
            sub_input = tf.concat(shift_inputs[:fs], axis=2)
            sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs,
                                         shape=[num_features*fs, nf], dtype=tf.float32,
                                         initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                         regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
            cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

        cnn_output = tf.concat(cnn_outputs, axis=2)
        return cnn_output
deep_cnn_deep_combine_chain_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def cnn(self, 
          model_input, 
          l2_penalty=1e-8, 
          num_filters = [128,128,256],
          filter_sizes = [1,2,3], 
          sub_scope="",
          **unused_params):
    max_frames = model_input.get_shape().as_list()[1]
    num_features = model_input.get_shape().as_list()[2]

    shift_inputs = []
    for i in xrange(max(filter_sizes)):
      if i == 0:
        shift_inputs.append(model_input)
      else:
        shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

    cnn_outputs = []
    for nf, fs in zip(num_filters, filter_sizes):
      sub_input = tf.concat(shift_inputs[:fs], axis=2)
      sub_filter = tf.get_variable(sub_scope+"filter-len%d"%fs, 
                       shape=[num_features*fs, nf], dtype=tf.float32, 
                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), 
                       regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
      cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

    cnn_output = tf.concat(cnn_outputs, axis=2)
    return cnn_output
positional_cnn_deep_combine_chain_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def cnn(self, 
          model_input, 
          l2_penalty=1e-8, 
          num_filters = [1024, 1024, 1024],
          filter_sizes = [1,2,3], 
          sub_scope="",
          **unused_params):
    max_frames = model_input.get_shape().as_list()[1]
    num_features = model_input.get_shape().as_list()[2]

    shift_inputs = []
    for i in xrange(max(filter_sizes)):
      if i == 0:
        shift_inputs.append(model_input)
      else:
        shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

    cnn_outputs = []
    for nf, fs in zip(num_filters, filter_sizes):
      sub_input = tf.concat(shift_inputs[:fs], axis=2)
      sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs, 
                       shape=[num_features*fs, nf], dtype=tf.float32, 
                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), 
                       regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
      cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

    cnn_output = tf.concat(cnn_outputs, axis=2)
    return cnn_output
multiscale_cnn_lstm_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def cnn(self, 
          model_input, 
          l2_penalty=1e-8, 
          num_filters = [1024, 1024, 1024],
          filter_sizes = [1,2,3], 
          sub_scope="",
          **unused_params):
    max_frames = model_input.get_shape().as_list()[1]
    num_features = model_input.get_shape().as_list()[2]

    shift_inputs = []
    for i in xrange(max(filter_sizes)):
      if i == 0:
        shift_inputs.append(model_input)
      else:
        shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

    cnn_outputs = []
    for nf, fs in zip(num_filters, filter_sizes):
      sub_input = tf.concat(shift_inputs[:fs], axis=2)
      sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs, 
                       shape=[num_features*fs, nf], dtype=tf.float32, 
                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), 
                       regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
      cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

    cnn_output = tf.concat(cnn_outputs, axis=2)
    cnn_output = slim.batch_norm(
        cnn_output,
        center=True,
        scale=True,
        is_training=FLAGS.is_training,
        scope=sub_scope+"cluster_bn")
    return cnn_output
cnn_lstm_memory_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def cnn(self, 
          model_input, 
          l2_penalty=1e-8, 
          num_filters = [1024, 1024, 1024],
          filter_sizes = [1,2,3], 
          **unused_params):
    max_frames = model_input.get_shape().as_list()[1]
    num_features = model_input.get_shape().as_list()[2]

    shift_inputs = []
    for i in xrange(max(filter_sizes)):
      if i == 0:
        shift_inputs.append(model_input)
      else:
        shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

    cnn_outputs = []
    for nf, fs in zip(num_filters, filter_sizes):
      sub_input = tf.concat(shift_inputs[:fs], axis=2)
      sub_filter = tf.get_variable("cnn-filter-len%d"%fs, shape=[num_features*fs, nf], dtype=tf.float32, 
                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), 
                       regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
      cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

    cnn_output = tf.concat(cnn_outputs, axis=2)
    return cnn_output
distillchain_cnn_deep_combine_chain_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def cnn(self, 
          model_input, 
          l2_penalty=1e-8, 
          num_filters = [1024, 1024, 1024],
          filter_sizes = [1,2,3], 
          sub_scope="",
          **unused_params):
    max_frames = model_input.get_shape().as_list()[1]
    num_features = model_input.get_shape().as_list()[2]

    shift_inputs = []
    for i in xrange(max(filter_sizes)):
      if i == 0:
        shift_inputs.append(model_input)
      else:
        shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

    cnn_outputs = []
    for nf, fs in zip(num_filters, filter_sizes):
      sub_input = tf.concat(shift_inputs[:fs], axis=2)
      sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs, 
                       shape=[num_features*fs, nf], dtype=tf.float32, 
                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), 
                       regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
      cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

    cnn_output = tf.concat(cnn_outputs, axis=2)
    return cnn_output
cnn_lstm_memory_multitask_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def cnn(self, 
          model_input, 
          l2_penalty=1e-8, 
          num_filters = [1024, 1024, 1024],
          filter_sizes = [1,2,3], 
          **unused_params):
    max_frames = model_input.get_shape().as_list()[1]
    num_features = model_input.get_shape().as_list()[2]

    shift_inputs = []
    for i in xrange(max(filter_sizes)):
      if i == 0:
        shift_inputs.append(model_input)
      else:
        shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

    cnn_outputs = []
    for nf, fs in zip(num_filters, filter_sizes):
      sub_input = tf.concat(shift_inputs[:fs], axis=2)
      sub_filter = tf.get_variable("cnn-filter-len%d"%fs, shape=[num_features*fs, nf], dtype=tf.float32, 
                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), 
                       regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
      cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

    cnn_output = tf.concat(cnn_outputs, axis=2)
    return cnn_output
cnn_deep_combine_chain_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def cnn(self, 
          model_input, 
          l2_penalty=1e-8, 
          num_filters = [1024, 1024, 1024],
          filter_sizes = [1,2,3], 
          sub_scope="",
          **unused_params):
    max_frames = model_input.get_shape().as_list()[1]
    num_features = model_input.get_shape().as_list()[2]

    shift_inputs = []
    for i in xrange(max(filter_sizes)):
      if i == 0:
        shift_inputs.append(model_input)
      else:
        shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:])

    cnn_outputs = []
    for nf, fs in zip(num_filters, filter_sizes):
      sub_input = tf.concat(shift_inputs[:fs], axis=2)
      sub_filter = tf.get_variable(sub_scope+"cnn-filter-len%d"%fs, 
                       shape=[num_features*fs, nf], dtype=tf.float32, 
                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), 
                       regularizer=tf.contrib.layers.l2_regularizer(l2_penalty))
      cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter))

    cnn_output = tf.concat(cnn_outputs, axis=2)
    return cnn_output


问题


面经


文章

微信
公众号

扫码关注公众号