python类uint8()的实例源码

data_input.py 文件源码 项目:cnn_picture_gazebo 作者: liuyandong1988 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def decode_from_tfrecords(filename,num_epoch=None):
    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#???????????????????????????????????????
    reader=tf.TFRecordReader()
    _,serialized=reader.read(filename_queue)
    example=tf.parse_single_example(serialized,features={
        'height':tf.FixedLenFeature([],tf.int64),
        'width':tf.FixedLenFeature([],tf.int64),
        'nchannel':tf.FixedLenFeature([],tf.int64),
        'image':tf.FixedLenFeature([],tf.string),
        'label':tf.FixedLenFeature([],tf.int64)
    })
    label=tf.cast(example['label'], tf.int32)
    image=tf.decode_raw(example['image'],tf.uint8)
    image=tf.reshape(image,tf.pack([
        tf.cast(example['height'], tf.int32),
        tf.cast(example['width'], tf.int32),
        tf.cast(example['nchannel'], tf.int32)]))
    return image,label
build_imagenet_data.py 文件源码 项目:keras_experiments 作者: avolkov1 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_png(self._png_data, channels=3)
    self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)

    # Resize
    self._resize = tf.expand_dims(self._decode_jpeg, 0)
    self._resize = tf.image.resize_bilinear(self._resize, [FLAGS.new_height, FLAGS.new_width])
    self._resize = tf.squeeze(self._resize)
    self._resize = tf.cast(self._resize, tf.uint8)

    self._new_jpeg = tf.image.encode_jpeg(self._resize, format='rgb', quality=FLAGS.jpeg_q,
      progressive=False, optimize_size=True, chroma_downsampling=True)
common.py 文件源码 项目:deepmodels 作者: learningsociety 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def preprocess(self, inputs):
    """Perform preprocess.

    Args:
      inputs: raw input to the model.
    Returns:
      preprocessed input data.
    """
    preprocess_fn = self.get_preprocess_fn()
    assert inputs.ndim == 3 or inputs.ndim == 4, "invalid image format for preprocessing"
    if inputs.ndim == 3:
      inputs = np.expand_dims(inputs, axis=0)
    with tf.Graph().as_default() as cur_g:
      input_tensor = tf.convert_to_tensor(inputs, dtype=tf.uint8)
      all_inputs = tf.unstack(input_tensor)
      processed_inputs = []
      for cur_input in all_inputs:
        new_input = preprocess_fn(cur_input, self.net_params.input_img_height,
                                  self.net_params.input_img_width)
        processed_inputs.append(new_input)
      new_inputs = tf.stack(processed_inputs)
      with tf.Session(graph=cur_g) as sess:
        processed_inputs = sess.run(new_inputs)
    return processed_inputs
read_tfrecord.py 文件源码 项目:tensorflow-yys 作者: ystyle 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def read_and_decode(filename, batch_size):
    # ???????????
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)  # ????????
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'img_raw': tf.FixedLenFeature([], tf.string),
        }
    )
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    print('xxxx: ', img.get_shape())
    img = tf.reshape(img, [512, 144, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    image_batch, label_batch = tf.train.batch([img, label],
                                              batch_size=batch_size,
                                              num_threads=64,
                                              capacity=2000)
    return image_batch, tf.reshape(label_batch, [batch_size])
input_data.py 文件源码 项目:DeepLearning 作者: educharlie 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with tf.gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
ML_Final_Project.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
ML_Final_Project_LBP.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
demo.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
download_and_convert_mnist.py 文件源码 项目:tf-slim-mnist 作者: mnuke 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _extract_images(filename, num_images):
  """Extract the images into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  print('Extracting images from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(
        _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  return data
download_and_convert_mnist.py 文件源码 项目:tf-slim-mnist 作者: mnuke 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _extract_labels(filename, num_labels):
  """Extract the labels into a vector of int64 label IDs.

  Args:
    filename: The path to an MNIST labels file.
    num_labels: The number of labels in the file.

  Returns:
    A numpy array of shape [number_of_labels]
  """
  print('Extracting labels from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_labels)
    labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
  return labels
StateProcessor.py 文件源码 项目:deep-RL-DQN-tensorflow 作者: ZidanMusk 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self):

        self.history = StateProcessorSetting.history_length
        self.dims = StateProcessorSetting.observation_dims
        pass

        #get current,prev frame, set by env
        with tf.variable_scope('input', reuse =True):
            self.cur_frame = tf.get_variable('cur_frame',dtype = tf.uint8)
            self.prev_frame = tf.get_variable('prev_frame',dtype = tf.uint8)

        with tf.variable_scope('input'):
            maxOf2 = tf.maximum(tf.to_float(self.cur_frame), tf.to_float(self.prev_frame))
            toGray = tf.expand_dims(tf.image.rgb_to_grayscale(maxOf2), 0)
            resize = tf.image.resize_bilinear(toGray, self.dims, align_corners=None, name='observation')
            self.observe = tf.div(tf.squeeze(resize), 255.0) 

            self.state = tf.get_variable(name = 'state', shape = [self.dims[0],self.dims[1],self.history], dtype = tf.float32,initializer = tf.constant_initializer(0.0),trainable = False)
            self.to_stack = tf.expand_dims(self.observe, 2)
            self.f3, self.f2, self.f1, _ = tf.split(2, self.history, self.state)  # each is 84x84x1
            self.concat = tf.concat(2, [self.to_stack, self.f3, self.f2, self.f1], name='concat')
            self.updateState = self.state.assign(self.concat)
tools.py 文件源码 项目:hart 作者: akosiorek 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_data(img_folder, label_folder, train_fraction, img_size,
             train_timesteps=4, test_timesteps=4, batch_size=1, sample_objects=False, n_threads=3,
             in_memory=False, which_seqs=None, truncated_threshold=2., occluded_threshold=3., depth_folder=None,
             storage_dtype=tf.uint8, mirror=False, reverse=False, bbox_scale=.5):
    kitti = KittiTrackingParser(img_folder, label_folder, presence=True, id=False, cls=False,
                                truncated_threshold=truncated_threshold, occluded_threshold=occluded_threshold)

    train, test = split_sequence_dict(kitti.data_dict, train_fraction)

    def make_store(name, d, timesteps, n_threads, mirror=False, reverse=False):
        s = KittiStore(d, timesteps, img_size, batch_size,
                       sample_objects=sample_objects, which_seqs=which_seqs, n_threads=n_threads,
                       in_memory=in_memory, depth_folder=depth_folder, storage_dtype=storage_dtype,
                       mirror=mirror, reverse=reverse, bbox_scale=bbox_scale, name=name)
        return s

    train_store = make_store('train', train, train_timesteps, n_threads, mirror, reverse)
    test_store = make_store('test', test, test_timesteps, (n_threads // 2) + 1)

    return train_store, train_store.get_minibatch(), test_store, test_store.get_minibatch()
download_and_convert_mnist.py 文件源码 项目:tensorflow_yolo2 作者: wenxichen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _extract_images(filename, num_images):
  """Extract the images into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  print('Extracting images from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(
        _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  return data
download_and_convert_mnist.py 文件源码 项目:tensorflow_yolo2 作者: wenxichen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _extract_labels(filename, num_labels):
  """Extract the labels into a vector of int64 label IDs.

  Args:
    filename: The path to an MNIST labels file.
    num_labels: The number of labels in the file.

  Returns:
    A numpy array of shape [number_of_labels]
  """
  print('Extracting labels from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_labels)
    labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
  return labels
facenet.py 文件源码 项目:facerecognition 作者: guoxiaolu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def read_and_augment_data(image_list, label_list, image_size, batch_size, max_nrof_epochs, 
        random_crop, random_flip, random_rotate, nrof_preprocess_threads, shuffle=True):

    images = ops.convert_to_tensor(image_list, dtype=tf.string)
    labels = ops.convert_to_tensor(label_list, dtype=tf.int32)

    # Makes an input queue
    input_queue = tf.train.slice_input_producer([images, labels],
        num_epochs=max_nrof_epochs, shuffle=shuffle)

    images_and_labels = []
    for _ in range(nrof_preprocess_threads):
        image, label = read_images_from_disk(input_queue)
        if random_rotate:
            image = tf.py_func(random_rotate_image, [image], tf.uint8)
        if random_crop:
            image = tf.random_crop(image, [image_size, image_size, 3])
        else:
            image = tf.image.resize_image_with_crop_or_pad(image, image_size, image_size)
        if random_flip:
            image = tf.image.random_flip_left_right(image)
        #pylint: disable=no-member
        image.set_shape((image_size, image_size, 3))
        image = tf.image.per_image_standardization(image)
        images_and_labels.append([image, label])

    image_batch, label_batch = tf.train.batch_join(
        images_and_labels, batch_size=batch_size,
        capacity=4 * nrof_preprocess_threads * batch_size,
        allow_smaller_final_batch=True)

    return image_batch, label_batch
facenet.py 文件源码 项目:facerecognition 作者: guoxiaolu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def to_rgb(img):
    w, h = img.shape
    ret = np.empty((w, h, 3), dtype=np.uint8)
    ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
    return ret
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames


问题


面经


文章

微信
公众号

扫码关注公众号