python类string()的实例源码

metrics_test.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _test_metric_spec(self, metric_spec, hyps, refs, expected_scores):
    """Tests a MetricSpec"""
    predictions = {"predicted_tokens": tf.placeholder(dtype=tf.string)}
    labels = {"target_tokens": tf.placeholder(dtype=tf.string)}

    value, update_op = metric_spec.create_metric_ops(None, labels, predictions)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(tf.local_variables_initializer())

      scores = []
      for hyp, ref in zip(hyps, refs):
        hyp = hyp.split(" ")
        ref = ref.split(" ")
        sess.run(update_op, {
            predictions["predicted_tokens"]: [hyp],
            labels["target_tokens"]: [ref]
        })
        scores.append(sess.run(value))

      for score, expected in zip(scores, expected_scores):
        np.testing.assert_almost_equal(score, expected, decimal=2)
        np.testing.assert_almost_equal(score, expected, decimal=2)
model.py 文件源码 项目:ISLES2017 作者: MiguelMonteiro 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def parse_example(serialized_example):
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'shape': tf.FixedLenFeature([], tf.string),
            'img_raw': tf.FixedLenFeature([], tf.string),
            'gt_raw': tf.FixedLenFeature([], tf.string),
            'example_name': tf.FixedLenFeature([], tf.string)
        })

    with tf.variable_scope('decoder'):
        shape = tf.decode_raw(features['shape'], tf.int32)
        image = tf.decode_raw(features['img_raw'], tf.float32)
        ground_truth = tf.decode_raw(features['gt_raw'], tf.uint8)
        example_name = features['example_name']

    with tf.variable_scope('image'):
        # reshape and add 0 dimension (would be batch dimension)
        image = tf.expand_dims(tf.reshape(image, shape), 0)
    with tf.variable_scope('ground_truth'):
        # reshape
        ground_truth = tf.cast(tf.reshape(ground_truth, shape[:-1]), tf.float32)
    return image, ground_truth, example_name
build_imagenet_data.py 文件源码 项目:revnet-public 作者: renmengye 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _build_synset_lookup(imagenet_metadata_file):
  """Build lookup for synset to human-readable label.
  Args:
    imagenet_metadata_file: string, path to file containing mapping from
      synset to human-readable label.
      Assumes each line of the file looks like:
        n02119247    black fox
        n02119359    silver fox
        n02119477    red fox, Vulpes fulva
      where each line corresponds to a unique mapping. Note that each line is
      formatted as <synset>\t<human readable label>.
  Returns:
    Dictionary of synset to human labels, such as:
      'n02119022' --> 'red fox, Vulpes vulpes'
  """
  lines = tf.gfile.FastGFile(imagenet_metadata_file, 'r').readlines()
  synset_to_human = {}
  for l in lines:
    if l:
      parts = l.strip().split('\t')
      assert len(parts) == 2
      synset = parts[0]
      human = parts[1]
      synset_to_human[synset] = human
  return synset_to_human
readers.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def prepare_reader(self, filename_queue, batch_size=1024):

    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
metric_specs.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def accumulate_strings(values, name="strings"):
  """Accumulates strings into a vector.

  Args:
    values: A 1-d string tensor that contains values to add to the accumulator.

  Returns:
    A tuple (value_tensor, update_op).
  """
  tf.assert_type(values, tf.string)
  strings = tf.Variable(
      name=name,
      initial_value=[],
      dtype=tf.string,
      trainable=False,
      collections=[],
      validate_shape=True)
  value_tensor = tf.identity(strings)
  update_op = tf.assign(
      ref=strings, value=tf.concat([strings, values], 0), validate_shape=False)
  return value_tensor, update_op
cifar10_input_test.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    contents = b"".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join(self.get_temp_dir(), "cifar")
    open(filename, "wb").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        self.assertEqual("%s:%d" % (filename, i), tf.compat.as_text(key))
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image])
preprocessing.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3,
                                 fancy_upscaling=False,
                                 dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

    return image
image.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def make_png_thumbnail(x, n):
    '''
    Input:
        `x`: Tensor, value range=[-1, 1), shape=[n*n, h, w, c]
        `n`: sqrt of the number of images

    Return:
        `tf.string` (bytes) of the PNG. 
        (write these binary directly into a file)
    '''
    with tf.name_scope('MakeThumbnail'):
        _, h, w, c = x.get_shape().as_list()
        x = tf.reshape(x, [n, n, h, w, c])
        x = tf.transpose(x, [0, 2, 1, 3, 4])
        x = tf.reshape(x, [n * h, n * w, c])
        x = x / 2. + .5
        x = tf.image.convert_image_dtype(x, tf.uint8, saturate=True)
        x = tf.image.encode_png(x)
    return x
image.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def make_png_jet_thumbnail(x, n):
    '''
    Input:
        `x`: Tensor, value range=[-1, 1), shape=[n*n, h, w, c]
        `n`: sqrt of the number of images

    Return:
        `tf.string` (bytes) of the PNG. 
        (write these binary directly into a file)
    '''
    with tf.name_scope('MakeThumbnail'):
        _, h, w, c = x.get_shape().as_list()
        x = tf.reshape(x, [n, n, h, w, c])
        x = tf.transpose(x, [0, 2, 1, 3, 4])
        x = tf.reshape(x, [n * h, n * w, c])
        x = x / 2. + .5
        x = gray2jet(x)
        x = tf.image.convert_image_dtype(x, tf.uint8, saturate=True)
        x = tf.image.encode_png(x)
    return x
hdf5_to_tfrecords.py 文件源码 项目:tfutils 作者: neuroailab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_shapes_and_dtypes(data):
    shapes = {}
    dtypes = {}
    for k in data.keys():
        if isinstance(data[k][0], str):
            shapes[k] = []
            dtypes[k] = tf.string
        elif isinstance(data[k][0], np.ndarray):
            shapes[k] = data[k][0].shape
            dtypes[k] = tf.uint8
        elif isinstance(data[k][0], np.bool_):
            shapes[k] = []
            dtypes[k] = tf.string
        else:
            raise TypeError('Unknown data type', type(data[k][0]))
    return shapes, dtypes
mjsynth-tfrecord.py 文件源码 项目:cnn_lstm_ctc_ocr 作者: weinman 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def make_example(filename, image_data, labels, text, height, width):
    """Build an Example proto for an example.
    Args:
    filename: string, path to an image file, e.g., '/path/to/example.JPG'
    image_data: string, JPEG encoding of grayscale image
    labels: integer list, identifiers for the ground truth for the network
    text: string, unique human-readable, e.g. 'dog'
    height: integer, image height in pixels
    width: integer, image width in pixels
  Returns:
    Example proto
  """
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': _bytes_feature(tf.compat.as_bytes(image_data)),
        'image/labels': _int64_feature(labels),
        'image/height': _int64_feature([height]),
        'image/width': _int64_feature([width]),
        'image/filename': _bytes_feature(tf.compat.as_bytes(filename)),
        'text/string': _bytes_feature(tf.compat.as_bytes(text)),
        'text/length': _int64_feature([len(text)])
    }))
    return example
data_handler.py 文件源码 项目:tf-crnn 作者: solivr 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def image_reading(path: str, resized_size: Tuple[int, int]=None, data_augmentation: bool=False,
                  padding: bool=False) -> Tuple[tf.Tensor, tf.Tensor]:
    # Read image
    image_content = tf.read_file(path, name='image_reader')
    image = tf.cond(tf.equal(tf.string_split([path], '.').values[1], tf.constant('jpg', dtype=tf.string)),
                    true_fn=lambda: tf.image.decode_jpeg(image_content, channels=1, try_recover_truncated=True), # TODO channels = 3 ?
                    false_fn=lambda: tf.image.decode_png(image_content, channels=1), name='image_decoding')

    # Data augmentation
    if data_augmentation:
        image = augment_data(image)

    # Padding
    if padding:
        with tf.name_scope('padding'):
            image, img_width = padding_inputs_width(image, resized_size, increment=CONST.DIMENSION_REDUCTION_W_POOLING)
    # Resize
    else:
        image = tf.image.resize_images(image, size=resized_size)
        img_width = tf.shape(image)[1]

    with tf.control_dependencies([tf.assert_equal(image.shape[:2], resized_size)]):
        return image, img_width
export_model.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs
readers.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
generate_tfrecord.py 文件源码 项目:unsupervised-2017-cvprw 作者: imatge-upc 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _convert_to_example(filename, video_buffer, label, text, height, width, sequence_length):
    """Deprecated: use _convert_to_sequential_example instead
    Build an Example proto for an example.
    Args:
        filename: string, path to a video file, e.g., '/path/to/example.avi'
        video_buffer: numpy array with the video frames, with dims [n_frames, height, width, n_channels]
        label: integer or list of integers, identifier for the ground truth for the network
        text: string, unique human-readable, e.g. 'dog'
        height: integer, image height in pixels
        width: integer, image width in pixels
        sequence_length: real length of the data, i.e. number of frames that are not zero-padding
    Returns:
        Example proto
    """
    example = tf.train.Example(features=tf.train.Features(feature={
        'sequence_length': _int64_feature(sequence_length),
        'height': _int64_feature(height),
        'width': _int64_feature(width),
        'class/label': _int64_feature(label),
        'class/text': _bytes_feature(text),
        'filename': _bytes_feature(os.path.basename(filename)),
        'frames': _bytes_feature(video_buffer.tostring())}))

    return example
generate_tfrecord.py 文件源码 项目:unsupervised-2017-cvprw 作者: imatge-upc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self):
        # Create a single Session to run all image coding calls.
        self._sess = tf.Session()

        # Initializes function that decodes video
        self._video_path = tf.placeholder(dtype=tf.string)
        self._decode_video = decode_video(self._video_path)

        # Initialize function that resizes a frame
        self._resize_video_data = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])

        # Initialize function to JPEG-encode a frame
        self._raw_frame = tf.placeholder(dtype=tf.uint8, shape=[None, None, 3])
        self._raw_mask  = tf.placeholder(dtype=tf.uint8, shape=[None, None, 1])
        self._encode_frame = tf.image.encode_jpeg(self._raw_frame, quality=100)
        self._encode_mask  = tf.image.encode_png(self._raw_mask)
image_reader.py 文件源码 项目:tf_base 作者: ozansener 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def setup_reader(self, image_paths, image_shape, num_concurrent, batch_size):
    # Path queue is list of image paths which will further be processed by another queue
    num_images = len(image_paths)
    indices = tf.range(0, num_images, 1)

    self.path_queue = tf.FIFOQueue(capacity=num_images, dtypes=[tf.int32, tf.string], name='path_queue')
    self.enqueue_path = self.path_queue.enqueue_many([indices, image_paths])
    self.close_path = self.path_queue.close()

    processed_queue = tf.FIFOQueue(capacity=num_images,
                       dtypes=[tf.int32, tf.float32],
                       shapes=[(), image_shape],
                       name='processed_queue')

    (idx, processed_image) = self.process()
    enqueue_process = processed_queue.enqueue([idx, processed_image])
    self.dequeue_batch = processed_queue.dequeue_many(batch_size)

    self.queue_runner = tf.train.QueueRunner(processed_queue, [enqueue_process] * num_concurrent)
block_compiler_test.py 文件源码 项目:fold 作者: tensorflow 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_compiler_input_tensor(self):
    input_tensor = tf.Variable(['foobar', 'baz'],
                               dtype=tf.string, name='input_variable')
    init_op = tf.global_variables_initializer()
    root_block = tdb.InputTransform(len) >> tdb.Scalar()
    compiler = tdc.Compiler()
    compiler.compile(root_block)
    compiler.init_loom(max_depth=1, input_tensor=input_tensor)
    output_tensor, = compiler.output_tensors
    with self.test_session() as sess:
      sess.run(init_op)
      results = sess.run(output_tensor)
      self.assertEqual(len(results), 2)
      self.assertEqual(results[0], 6.)
      self.assertEqual(results[1], 3.)
      sess.run(input_tensor.assign(['foo', 'blah']))
      results = sess.run(output_tensor)
      self.assertEqual(len(results), 2)
      self.assertEqual(results[0], 3.)
      self.assertEqual(results[1], 4.)
plan.py 文件源码 项目:fold 作者: tensorflow 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def create(cls, mode):
    """Creates a plan.

    Args:
      mode: A string; 'train', 'eval', or 'infer'.

    Raises:
      ValueError: If `mode` is invalid.

    Returns:
      A Plan.
    """
    cases = {Plan.mode_keys.TRAIN: TrainPlan,
             Plan.mode_keys.EVAL: EvalPlan,
             Plan.mode_keys.INFER: InferPlan}
    if mode not in cases:
      raise ValueError('invalid mode %r not in %s' % (mode, sorted(cases)))
    return cases[mode]()
min_examp.py 文件源码 项目:TFExperiments 作者: gnperdue 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def parse_mnist_tfrec(tfrecord, features_shape):
    tfrecord_features = tf.parse_single_example(
        tfrecord,
        features={
            'features': tf.FixedLenFeature([], tf.string),
            'targets': tf.FixedLenFeature([], tf.string)
        }
    )
    features = tf.decode_raw(tfrecord_features['features'], tf.uint8)
    features = tf.reshape(features, features_shape)
    features = tf.cast(features, tf.float32)
    targets = tf.decode_raw(tfrecord_features['targets'], tf.uint8)
    targets = tf.reshape(targets, [])
    targets = tf.one_hot(indices=targets, depth=10, on_value=1, off_value=0)
    targets = tf.cast(targets, tf.float32)
    return features, targets
DataReaders.py 文件源码 项目:TFExperiments 作者: gnperdue 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def parse_mnist_tfrec(tfrecord, name, features_shape, scalar_targs=False):
    tfrecord_features = tf.parse_single_example(
        tfrecord,
        features={
            'features': tf.FixedLenFeature([], tf.string),
            'targets': tf.FixedLenFeature([], tf.string)
        },
        name=name+'_data'
    )
    with tf.variable_scope('features'):
        features = tf.decode_raw(
            tfrecord_features['features'], tf.uint8
        )
        features = tf.reshape(features, features_shape)
        features = tf.cast(features, tf.float32)
    with tf.variable_scope('targets'):
        targets = tf.decode_raw(tfrecord_features['targets'], tf.uint8)
        if scalar_targs:
            targets = tf.reshape(targets, [])
        targets = tf.one_hot(
            indices=targets, depth=10, on_value=1, off_value=0
        )
        targets = tf.cast(targets, tf.float32)
    return features, targets
task.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_placeholder_input_fn(metadata):
  """Wrap the get input features function to provide the metadata."""

  def get_input_features():
    """Read the input features from the given placeholder."""
    examples = tf.placeholder(
        dtype=tf.string,
        shape=(None,),
        name='input_example')
    features = ml.features.FeatureMetadata.parse_features(metadata, examples,
                                                          keep_target=False)
    features[EXAMPLES_PLACEHOLDER_KEY] = examples
    # The target feature column is not used for prediction so return None.
    return features, None

  # Return a function to input the feaures into the model from a placeholder.
  return get_input_features
criteo.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def make_input_schema(mode=tf.contrib.learn.ModeKeys.TRAIN):
  """Input schema definition.

  Args:
    mode: tf.contrib.learn.ModeKeys specifying if the schema is being used for
      train/eval or prediction.
  Returns:
    A `Schema` object.
  """
  result = ({} if mode == tf.contrib.learn.ModeKeys.INFER
            else {'clicked': tf.FixedLenFeature(shape=[], dtype=tf.int64)})
  for name in INTEGER_COLUMN_NAMES:
    result[name] = tf.FixedLenFeature(
        shape=[], dtype=tf.int64, default_value=-1)
  for name in CATEGORICAL_COLUMN_NAMES:
    result[name] = tf.FixedLenFeature(shape=[], dtype=tf.string,
                                      default_value='')

  return dataset_schema.from_feature_spec(result)
model.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def example_serving_input_fn(default_batch_size=None):
  """Build the serving inputs.

  Args:
    default_batch_size (int): Batch size for the tf.placeholder shape
  """
  feature_spec = {}
  for feat in CONTINUOUS_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.int64)

  for feat, _ in CATEGORICAL_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.string)

  example_bytestring = tf.placeholder(
      shape=[default_batch_size],
      dtype=tf.string,
  )
  features = tf.parse_example(example_bytestring, feature_spec)
  return features, {'example': example_bytestring}
model.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def parse_label_column(label_string_tensor):
  """Parses a string tensor into the label tensor
  Args:
    label_string_tensor: Tensor of dtype string. Result of parsing the
    CSV column specified by LABEL_COLUMN
  Returns:
    A Tensor of the same shape as label_string_tensor, should return
    an int64 Tensor representing the label index for classification tasks,
    and a float32 Tensor representing the value for a regression task.
  """
  # Build a Hash Table inside the graph
  table = tf.contrib.lookup.index_table_from_tensor(tf.constant(LABELS))

  # Use the hash table to convert string labels to ints and one-hot encode
  return table.lookup(label_string_tensor)


# ************************************************************************
# YOU NEED NOT MODIFY ANYTHING BELOW HERE TO ADAPT THIS MODEL TO YOUR DATA
# ************************************************************************
movielens.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _make_schema(columns, types, default_values):
  """Input schema definition.

  Args:
    columns: column names for fields appearing in input.
    types: column types for fields appearing in input.
    default_values: default values for fields appearing in input.
  Returns:
    feature_set dictionary of string to *Feature.
  """
  result = {}
  assert len(columns) == len(types)
  assert len(columns) == len(default_values)
  for c, t, v in zip(columns, types, default_values):
    if isinstance(t, list):
      result[c] = tf.VarLenFeature(dtype=t[0])
    else:
      result[c] = tf.FixedLenFeature(shape=[], dtype=t, default_value=v)
  return dataset_schema.from_feature_spec(result)
model.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_prediction_graph(self):
    """Builds prediction graph and registers appropriate endpoints."""

    tensors = self.build_graph(None, 1, GraphMod.PREDICT)

    keys_placeholder = tf.placeholder(tf.string, shape=[None])
    inputs = {
        'key': keys_placeholder,
        'image_bytes': tensors.input_jpeg
    }

    # To extract the id, we need to add the identity function.
    keys = tf.identity(keys_placeholder)
    outputs = {
        'key': keys,
        'prediction': tensors.predictions[0],
        'scores': tensors.predictions[1]
    }

    return inputs, outputs
reddit.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def make_input_schema(mode=tf.contrib.learn.ModeKeys.TRAIN):
  """Input schema definition.

  Args:
    mode: tf.contrib.learn.ModeKeys specifying if the schema is being used for
      train/eval or prediction.
  Returns:
    A `Schema` object.
  """
  result = ({} if mode == tf.contrib.learn.ModeKeys.INFER else {
      'score': tf.FixedLenFeature(shape=[], dtype=tf.float32)
  })
  result.update({
      'subreddit': tf.FixedLenFeature(shape=[], dtype=tf.string),
      'author': tf.FixedLenFeature(shape=[], dtype=tf.string),
      'comment_body': tf.FixedLenFeature(shape=[], dtype=tf.string,
                                         default_value=''),
      'comment_parent_body': tf.FixedLenFeature(shape=[], dtype=tf.string,
                                                default_value=''),
      'toplevel': tf.FixedLenFeature(shape=[], dtype=tf.int64),
  })
  return dataset_schema.from_feature_spec(result)
tensorport.py 文件源码 项目:jack 作者: uclmr 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, dtype, shape, name, doc_string=None, shape_string=None):
        """Create a new TensorPort.

        Args:
            dtype: the (TF) data type of the port.
            shape: the shape of the tensor.
            name: the name of this port (should be a valid TF name)
            doc_string: a documentation string associated with this port
            shape_string: a string of the form [size_1,size_2,size_3] where size_i is a text describing the
                size of the tensor's dimension i (such as "number of batches").
        """
        self.dtype = dtype
        self.shape = shape
        self.name = name
        self.__doc__ = doc_string
        self.shape_string = shape_string
export_model.py 文件源码 项目:youtube-8m 作者: google 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_inputs_and_outputs(self):
    if self.frame_features:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      fn = lambda x: self.build_prediction_graph(x)
      video_id_output, top_indices_output, top_predictions_output = (
          tf.map_fn(fn, serialized_examples,
                    dtype=(tf.string, tf.int32, tf.float32)))

    else:
      serialized_examples = tf.placeholder(tf.string, shape=(None,))

      video_id_output, top_indices_output, top_predictions_output = (
          self.build_prediction_graph(serialized_examples))

    inputs = {"example_bytes":
              saved_model_utils.build_tensor_info(serialized_examples)}

    outputs = {
        "video_id": saved_model_utils.build_tensor_info(video_id_output),
        "class_indexes": saved_model_utils.build_tensor_info(top_indices_output),
        "predictions": saved_model_utils.build_tensor_info(top_predictions_output)}

    return inputs, outputs


问题


面经


文章

微信
公众号

扫码关注公众号