python类reset_default_graph()的实例源码

seq2seq_example.py 文件源码 项目:tflearn 作者: tflearn 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_main3():
    '''
    Integration test - training then prediction: attention model
    '''
    import tempfile
    wfn = "tmp_weights.tfl"
    if os.path.exists(wfn):
        os.unlink(wfn)
    arglist = "-e 2 -o tmp_weights.tfl -v -v -v -v -m embedding_attention train 5000"
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    assert os.path.exists(wfn)

    arglist = "-i tmp_weights.tfl -v -v -v -v -m embedding_attention predict 1 2 3 4 5 6 7 8 9 0" 
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    assert len(ts2s.prediction_results[0][0])==10

#-----------------------------------------------------------------------------
mnist_2conv_2dense.py 文件源码 项目:probabilistic_line_search 作者: ProbabilisticNumerics 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def set_up_model():
  tf.reset_default_graph()
  X = tf.placeholder(tf.float32, shape=[None, 784])
  y = tf.placeholder(tf.float32, shape=[None, 10])
  W_conv1 = weight_variable([5, 5, 1, 32])
  b_conv1 = bias_variable([32])
  X_image = tf.reshape(X, [-1,28,28,1])
  h_conv1 = tf.nn.relu(conv2d(X_image, W_conv1) + b_conv1)
  h_pool1 = max_pool_2x2(h_conv1)
  W_conv2 = weight_variable([5, 5, 32, 64])
  b_conv2 = bias_variable([64])
  h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
  h_pool2 = max_pool_2x2(h_conv2)
  W_fc1 = weight_variable([7 * 7 * 64, 1024])
  b_fc1 = bias_variable([1024])
  h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
  h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
  W_fc2 = weight_variable([1024, 10])
  b_fc2 = bias_variable([10])
  h_fc2 = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
  losses = -tf.reduce_sum(y*tf.log(h_fc2), reduction_indices=[1])
  return losses, [X, y], [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]
test_gradient_moment.py 文件源码 项目:probabilistic_line_search 作者: ProbabilisticNumerics 项目源码 文件源码 阅读 62 收藏 0 点赞 0 评论 0
def setUp(self):    
    # Set up model
    tf.reset_default_graph()
    X = tf.placeholder(tf.float32, shape=[None, 784])
    y = tf.placeholder(tf.float32, shape=[None, 10])
    W_fc1 = weight_variable([784, 1024])
    b_fc1 = bias_variable([1024])
    h_fc1 = tf.nn.relu(tf.matmul(X, W_fc1) + b_fc1)
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    h_fc2 = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    losses = -tf.reduce_sum(y*tf.log(h_fc2), reduction_indices=[1])

    self.loss = tf.reduce_mean(losses)
    self.batch_size = tf.cast(tf.gather(tf.shape(losses), 0), tf.float32)
    self.var_list = [W_fc1, b_fc1, W_fc2, b_fc2]
    self.X = X
    self.y = y

    self.sess = tf.Session()
    self.sess.run(tf.initialize_all_variables())

    self.mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testModuleInfo_multiple_subgraph(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb(ph_0)
    with tf.name_scope("foo"):
      dumb(ph_0)
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      self.assertEqual(len(sonnet_collection), 1)
      self.assertEqual(len(sonnet_collection[0].connected_subgraphs), 2)
      connected_subgraph_0 = sonnet_collection[0].connected_subgraphs[0]
      connected_subgraph_1 = sonnet_collection[0].connected_subgraphs[1]
      self.assertEqual(connected_subgraph_0.name_scope, "dumb_a")
      self.assertEqual(connected_subgraph_1.name_scope, "foo/dumb_a")
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testModuleInfo_sparsetensor(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    sparse_tensor = tf.SparseTensor(
        indices=tf.placeholder(dtype=tf.int64, shape=(10, 2,)),
        values=tf.placeholder(dtype=tf.float32, shape=(10,)),
        dense_shape=tf.placeholder(dtype=tf.int64, shape=(2,)))
    dumb(sparse_tensor)
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(
          connected_subgraph.inputs["inputs"], tf.SparseTensor)
      self.assertIsInstance(connected_subgraph.outputs, tf.SparseTensor)
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def testModuleInfo_namedtuple(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb(DumbNamedTuple(ph_0, ph_1))
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertTrue(
          base_info._is_namedtuple(connected_subgraph.inputs["inputs"]))
      self.assertTrue(base_info._is_namedtuple(connected_subgraph.outputs))
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def testModuleInfo_dict(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb({"ph_0": ph_0, "ph_1": ph_1})
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(connected_subgraph.inputs["inputs"], dict)
      self.assertIsInstance(connected_subgraph.outputs, dict)
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testModuleInfo_recursion(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a", no_nest=True)
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    val = {"one": ph_0, "self": None}
    val["self"] = val
    dumb(val)
    def check(check_type):
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(connected_subgraph.inputs["inputs"]["one"],
                            tf.Tensor)
      self.assertIsInstance(
          connected_subgraph.inputs["inputs"]["self"], check_type)
      self.assertIsInstance(connected_subgraph.outputs["one"], tf.Tensor)
      self.assertIsInstance(connected_subgraph.outputs["self"], check_type)
    check(dict)
    _copy_default_graph()
    check(base_info._UnserializableObject)
inception_v2_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
inception_v3_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v3(inputs, num_classes)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
inception_v1_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
experiment.py 文件源码 项目:Graph-CNN 作者: fps7806 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, dataset_name, model_name, net_constructor):
        # Initialize all defaults
        self.dataset_name = dataset_name
        self.model_name = model_name
        self.num_iterations = 200
        self.iterations_per_test = 5
        self.display_iter = 5
        self.snapshot_iter = 1000000
        self.train_batch_size = 0
        self.test_batch_size = 0
        self.crop_if_possible = True
        self.debug = False
        self.starter_learning_rate = 0.1
        self.learning_rate_exp = 0.1
        self.learning_rate_step = 1000
        self.reports = {}
        self.silent = False
        self.optimizer = 'momentum'

        self.net_constructor = net_constructor
        self.net = GraphCNNNetwork()
        self.net_desc = GraphCNNNetworkDescription()
        tf.reset_default_graph()

    # print_ext can be disabled through the silent flag
all_methods_on_mnist.py 文件源码 项目:RFHO 作者: lucfra 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _check_adam():
    for _mode in HO_MODES[:2]:
        for _model in IMPLEMENTED_MODEL_TYPES[1:2]:
            _model_kwargs = {'dims': [None, 300, 300, None]}
            tf.reset_default_graph()

            # set random seeds!!!!
            np.random.seed(1)
            tf.set_random_seed(1)

            experiment('test_with_model_' + _model,
                       collect_data=False, hyper_iterations=3, mode=_mode, epochs=3,
                       optimizer=rf.AdamOptimizer,
                       optimizer_kwargs={'lr': tf.Variable(.001, name='eta_adam')},
                       model=_model,
                       model_kwargs=_model_kwargs,
                       set_T=100,
                       )
all_methods_on_mnist.py 文件源码 项目:RFHO 作者: lucfra 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _check_forward():
    w_100 = []
    for i in range(1):
        for _mode in HO_MODES[0:1]:
            for _model in IMPLEMENTED_MODEL_TYPES[0:2]:
                _model_kwargs = {}  # {'dims': [None, 300, 300, None]}
                tf.reset_default_graph()
                # set random seeds!!!!
                np.random.seed(1)
                tf.set_random_seed(1)

                results = experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=10, mode=_mode,
                                     epochs=None,
                                     model=_model,
                                     model_kwargs=_model_kwargs,
                                     set_T=1000,
                                     synthetic_hypers=None,
                                     hyper_batch_size=100
                                     # optimizer=rf.GradientDescentOptimizer,
                                     # optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
                                     )
                w_100.append(results[0]['weights'])
    # rf.save_obj(w_100, 'check_forward')
    return w_100
all_methods_on_mnist.py 文件源码 项目:RFHO 作者: lucfra 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _check_all_methods():
    for _mode in HO_MODES[:]:
        for _model in IMPLEMENTED_MODEL_TYPES:
            # _model_kwargs = {'dims': [None, 300, 300, None]}
            tf.reset_default_graph()
            # set random seeds!!!!
            np.random.seed(1)
            tf.set_random_seed(1)

            experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=3, mode=_mode,
                       # epochs=3,
                       model=_model,
                       # model_kwargs=_model_kwargs,
                       set_T=100,
                       synthetic_hypers=None,
                       hyper_batch_size=100
                       # optimizer=rf.GradientDescentOptimizer,
                       # optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
                       )
all_methods_on_mnist.py 文件源码 项目:RFHO 作者: lucfra 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _check_cnn():
    print('END')
    for _mode in HO_MODES[2:3]:
        for _model in IMPLEMENTED_MODEL_TYPES[2:3]:
            tf.reset_default_graph()
            np.random.seed(1)
            tf.set_random_seed(1)

            _model_kwargs = {'conv_dims': [[5, 5, 1, 2], [5, 5, 2, 4], [5, 5, 4, 8]],
                             'ffnn_dims': [128, 10]}

            # noinspection PyTypeChecker
            experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=3, mode=_mode,
                       epochs=2,
                       model=_model,
                       model_kwargs=_model_kwargs,
                       set_T=100,
                       synthetic_hypers=None,
                       hyper_batch_size=100,
                       l1=None,
                       l2=None
                       # optimizer=rf.GradientDescentOptimizer,
                       # optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
                       )
Main.py 文件源码 项目:FFS-ANN 作者: GVLABHernandez 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_neural_network(self):

        meanStdInput = pd.read_csv(self.meanStdInputPath, sep = ',').set_index('Unnamed: 0').as_matrix()
        self.meanInput = np.array(meanStdInput[0])
        self.stdInput = np.array(meanStdInput[1])
        meanStdOutput = pd.read_csv(self.meanStdOutputPath, sep = ',').set_index('Unnamed: 0').as_matrix()
        self.meanOutput = np.array(meanStdOutput[0])
        self.stdOutput = np.array(meanStdOutput[1])

        tf.reset_default_graph()

        with tf.Graph().as_default(), tf.Session() as self.sess:

            self.x = tf.placeholder('float32', [None, self.inputSize])  # Input Tensor
            self.y_ = tf.placeholder('float32', [None, self.outputSize])  # Output Tensor
            self.create_NN()
            self.sess.run(tf.global_variables_initializer())
            self.sess = tf.Session(config = tf.ConfigProto(log_device_placement = True))
            saver = tf.train.Saver()
            saver = tf.train.import_meta_graph(self.ANNPath + '.meta')
            saver.restore(self.sess, self.ANNPath)
            print('Artificial Neural Network from: ' + self.saveFolder + ' loaded !')
precompute_probs.py 文件源码 项目:instacart-basket-prediction 作者: colinmorris 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def precompute_probs_for_tag(tag, userfold):
  hps = hypers.hps_for_tag(tag, mode=hypers.Mode.inference)
  tf.logging.info('Creating model')
  dat = BasketDataset(hps, userfold)
  model = rnnmodel.RNNModel(hps, dat)
  sess = tf.InteractiveSession()
  # Load pretrained weights
  tf.logging.info('Loading weights')
  utils.load_checkpoint_for_tag(tag, sess)
  # TODO: deal with 'test mode'
  tf.logging.info('Calculating probabilities')
  probmap = get_probmap(model, sess)
  # Hack because of silly reasons.
  if userfold == 'validation_full':
    userfold = 'validation'
  common.save_pdict_for_tag(tag, probmap, userfold)
  sess.close()
  tf.reset_default_graph()
  return probmap
svnh_semi_supervised_model_train.py 文件源码 项目:tf_serving_example 作者: Vetal1977 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main():
    # preparations
    create_checkpoints_dir()
    utils.download_train_and_test_data()
    trainset, testset = utils.load_data_sets()

    # create real input for the GAN model (its dicriminator) and
    # GAN model itself
    real_size = (32, 32, 3)
    z_size = 100
    learning_rate = 0.0003

    tf.reset_default_graph()
    input_real = tf.placeholder(tf.float32, (None, *real_size), name='input_real')
    net = GAN(input_real, z_size, learning_rate)

    # craete dataset
    dataset = Dataset(trainset, testset)

    # train the model
    batch_size = 128
    epochs = 25
    _, _, _ = train(net, dataset, epochs, batch_size, z_size)
autoencoder.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def close(self):
        tf.reset_default_graph()
        self.sess.close()


问题


面经


文章

微信
公众号

扫码关注公众号