python类get_default_graph()的实例源码

build.py 文件源码 项目:tensorflow-yolo 作者: hjimce 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_from_pb(self):
        with tf.gfile.FastGFile(self.FLAGS.pbLoad, "rb") as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())

        tf.import_graph_def(
            graph_def,
            name=""
        )
        with open(self.FLAGS.metaLoad, 'r') as fp:
            self.meta = json.load(fp)
        self.framework = create_framework(self.meta, self.FLAGS)

        # Placeholders
        self.inp = tf.get_default_graph().get_tensor_by_name('input:0')
        self.feed = dict() # other placeholders
        self.out = tf.get_default_graph().get_tensor_by_name('output:0')

        self.setup_meta_ops()
utils_test.py 文件源码 项目:cxflow-tensorflow 作者: Cognexa 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_create_optimizer(self):
        """Test if create optimizer does work with tf optimizers."""

        optimizer_config = {'learning_rate': 0.1}

        # test missing required entry `class`
        self.assertRaises(AssertionError, create_optimizer, optimizer_config)

        optimizer_config['class'] = 'tensorflow.python.training.gradient_descent.GradientDescentOptimizer'

        with tf.Session().as_default():
            # test if the optimizer is created correctlyW
            optimizer = create_optimizer(optimizer_config)
            self.assertIsInstance(optimizer, tf.train.GradientDescentOptimizer)

            # test if learning_rate variable is created with the correct value
            lr_tensor = tf.get_default_graph().get_tensor_by_name('learning_rate:0')
            tf.get_default_session().run(tf.global_variables_initializer())
            self.assertAlmostEqual(lr_tensor.eval(), 0.1)

        optimizer_config2 = {'learning_rate': 0.1, 'class': 'tensorflow.python.training.momentum.MomentumOptimizer'}

        # test missing required argument (momentum in this case)
        with tf.Graph().as_default():
            self.assertRaises(TypeError, create_optimizer, optimizer_config2)
test_dbinterface.py 文件源码 项目:tfutils 作者: neuroailab 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def train_model(self, num_steps=100):
        x_train = [1, 2, 3, 4]
        y_train = [0, -1, -2, -3]
        x = tf.get_default_graph().get_tensor_by_name('model_0/x:0')
        y = tf.get_default_graph().get_tensor_by_name('model_0/y:0')
        feed_dict = {x: x_train, y: y_train}

        pre_global_step = self.sess.run(self.global_step)
        for step in range(num_steps):
            train_res = self.sess.run(self.train_targets, feed_dict=feed_dict)
            self.log.info('Step: {}, loss: {}'.format(step, train_res['loss']))

        post_global_step = self.sess.run(self.global_step)
        self.assertEqual(pre_global_step + num_steps, post_global_step)
        self.step += num_steps
        return train_res
load.py 文件源码 项目:how_to_deploy_a_keras_model_to_production 作者: llSourcell 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def init(): 
    json_file = open('model.json','r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)
    #load woeights into new model
    loaded_model.load_weights("model.h5")
    print("Loaded Model from disk")

    #compile and evaluate loaded model
    loaded_model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
    #loss,accuracy = model.evaluate(X_test,y_test)
    #print('loss:', loss)
    #print('accuracy:', accuracy)
    graph = tf.get_default_graph()

    return loaded_model,graph
Util.py 文件源码 项目:MLPractices 作者: carefree0910 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_frozen_graph(graph_dir, fix_nodes=True, entry=None, output=None):
        with gfile.FastGFile(graph_dir, "rb") as file:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(file.read())
            if fix_nodes:
                for node in graph_def.node:
                    if node.op == 'RefSwitch':
                        node.op = 'Switch'
                        for index in range(len(node.input)):
                            if 'moving_' in node.input[index]:
                                node.input[index] = node.input[index] + '/read'
                    elif node.op == 'AssignSub':
                        node.op = 'Sub'
                        if 'use_locking' in node.attr:
                            del node.attr['use_locking']
            tf.import_graph_def(graph_def, name="")
            if entry is not None:
                entry = tf.get_default_graph().get_tensor_by_name(entry)
            if output is not None:
                output = tf.get_default_graph().get_tensor_by_name(output)
            return entry, output
ros_node.py 文件源码 项目:tea 作者: antorsae 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def init_segmenter(args_segmenter_model):
    global segmenter_model, rings, sectors, points_per_ring, is_ped, tf_segmenter_graph
    segmenter_model = load_model(args_segmenter_model, compile=False)
    segmenter_model._make_predict_function() # https://github.com/fchollet/keras/issues/6124
    print("Loading segmenter model " + args_segmenter_model)
    segmenter_model.summary()
    points_per_ring = segmenter_model.get_input_shape_at(0)[0][1]
    match = re.search(r'lidarnet-(car|ped)-.*seg-rings_(\d+)_(\d+)-sectors_(\d+)-.*\.hdf5', args_segmenter_model)
    is_ped = match.group(1) == 'ped'
    rings = range(int(match.group(2)), int(match.group(3)))
    sectors = int(match.group(4))
    points_per_ring *= sectors
    assert len(rings) == segmenter_model.get_input_shape_at(0)[0][2]
    print('Loaded segmenter model with ' + str(points_per_ring) + ' points per ring and ' + str(len(rings)) +
          ' rings from ' + str(rings[0]) + ' to ' + str(rings[-1]) )

    if K._backend == 'tensorflow':
        tf_segmenter_graph = tf.get_default_graph()
        print(tf_segmenter_graph)
    return
test_tf_util.py 文件源码 项目:combine-DT-with-NN-in-RL 作者: Burning-Bear 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_set_value():
    a = tf.Variable(42.)
    with single_threaded_session():
        set_value(a, 5)
        assert a.eval() == 5
        g = tf.get_default_graph()
        g.finalize()
        set_value(a, 6)
        assert a.eval() == 6

        # test the test
        try:
            assert a.eval() == 7
        except AssertionError:
            pass
        else:
            assert False, "assertion should have failed"
test_tf_util.py 文件源码 项目:combine-DT-with-NN-in-RL 作者: Burning-Bear 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def test_set_value():
    a = tf.Variable(42.)
    with single_threaded_session():
        set_value(a, 5)
        assert a.eval() == 5
        g = tf.get_default_graph()
        g.finalize()
        set_value(a, 6)
        assert a.eval() == 6

        # test the test
        try:
            assert a.eval() == 7
        except AssertionError:
            pass
        else:
            assert False, "assertion should have failed"
test_tf_util.py 文件源码 项目:rl-attack-detection 作者: yenchenlin 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_set_value():
    a = tf.Variable(42.)
    with single_threaded_session():
        set_value(a, 5)
        assert a.eval() == 5
        g = tf.get_default_graph()
        g.finalize()
        set_value(a, 6)
        assert a.eval() == 6

        # test the test
        try:
            assert a.eval() == 7
        except AssertionError:
            pass
        else:
            assert False, "assertion should have failed"
random_walk_sampler.py 文件源码 项目:HyperGAN 作者: 255BITS 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _sample(self):
        gan = self.gan
        z_t = gan.encoder.sample
        inputs_t = gan.inputs.x

        if self.z is None:
            self.z = gan.encoder.sample.eval()
            self.target = gan.encoder.sample.eval()
            self.input = gan.session.run(gan.inputs.x)

        if self.step > self.steps:
            self.z = self.target
            self.target = gan.encoder.sample.eval()
            self.step = 0

        percent = float(self.step)/self.steps
        z_interp = self.z*(1.0-percent) + self.target*percent
        self.step+=1

        g=tf.get_default_graph()
        with g.as_default():
            tf.set_random_seed(1)
            return {
                'generator': gan.session.run(gan.generator.sample, feed_dict={z_t: z_interp, inputs_t: self.input})
            }
test_tf_util.py 文件源码 项目:baselines 作者: openai 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_set_value():
    a = tf.Variable(42.)
    with single_threaded_session():
        set_value(a, 5)
        assert a.eval() == 5
        g = tf.get_default_graph()
        g.finalize()
        set_value(a, 6)
        assert a.eval() == 6

        # test the test
        try:
            assert a.eval() == 7
        except AssertionError:
            pass
        else:
            assert False, "assertion should have failed"
test.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test():
    with tf.Graph().as_default():
        image, label = input.get_input(LABEL_PATH, LABEL_FORMAT, IMAGE_PATH, IMAGE_FORMAT)
        logits = model.inference(image)
        top_k_op = tf.nn.in_top_k(logits, label, 1)

        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # Get summaries for TENSOR BOARD
        summary_op = tf.merge_all_summaries()
        graph_def = tf.get_default_graph().as_graph_def()
        summary_writer = tf.train.SummaryWriter(input.FLAGS.eval_dir, graph_def=graph_def)

        while True:
            evaluate_model(saver, summary_writer, top_k_op, summary_op)
            if input.FLAGS.run_once:
                break
            time.sleep(input.FLAGS.eval_interval_secs)
initializers_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testScopeRestore(self):
    c1 = conv.Conv2D(
        16,
        8,
        4,
        name='conv_2d_0',
        padding=conv.VALID,
        initializers={
            'w':
                initializers.restore_initializer(
                    _checkpoint(), 'w', scope='agent/conv_net_2d/conv_2d_0'),
            'b':
                initializers.restore_initializer(
                    _checkpoint(), 'b', scope='agent/conv_net_2d/conv_2d_0')
        })

    inputs = tf.constant(1 / 255.0, shape=[1, 86, 86, 3])
    outputs = c1(inputs)
    init = tf.global_variables_initializer()
    tf.get_default_graph().finalize()
    with self.test_session() as session:
      session.run(init)
      o = session.run(outputs)

    self.assertAllClose(np.linalg.norm(o), _ONE_CONV_LAYER, atol=_TOLERANCE)
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testModuleInfo_multiple_subgraph(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb(ph_0)
    with tf.name_scope("foo"):
      dumb(ph_0)
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      self.assertEqual(len(sonnet_collection), 1)
      self.assertEqual(len(sonnet_collection[0].connected_subgraphs), 2)
      connected_subgraph_0 = sonnet_collection[0].connected_subgraphs[0]
      connected_subgraph_1 = sonnet_collection[0].connected_subgraphs[1]
      self.assertEqual(connected_subgraph_0.name_scope, "dumb_a")
      self.assertEqual(connected_subgraph_1.name_scope, "foo/dumb_a")
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testModuleInfo_sparsetensor(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    sparse_tensor = tf.SparseTensor(
        indices=tf.placeholder(dtype=tf.int64, shape=(10, 2,)),
        values=tf.placeholder(dtype=tf.float32, shape=(10,)),
        dense_shape=tf.placeholder(dtype=tf.int64, shape=(2,)))
    dumb(sparse_tensor)
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(
          connected_subgraph.inputs["inputs"], tf.SparseTensor)
      self.assertIsInstance(connected_subgraph.outputs, tf.SparseTensor)
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testModuleInfo_tuple(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb((ph_0, ph_1))
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(connected_subgraph.inputs["inputs"], tuple)
      self.assertIsInstance(connected_subgraph.outputs, tuple)
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testModuleInfo_dict(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb({"ph_0": ph_0, "ph_1": ph_1})
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(connected_subgraph.inputs["inputs"], dict)
      self.assertIsInstance(connected_subgraph.outputs, dict)
    check()
    _copy_default_graph()
    check()
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testModuleInfo_recursion(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a", no_nest=True)
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    val = {"one": ph_0, "self": None}
    val["self"] = val
    dumb(val)
    def check(check_type):
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(connected_subgraph.inputs["inputs"]["one"],
                            tf.Tensor)
      self.assertIsInstance(
          connected_subgraph.inputs["inputs"]["self"], check_type)
      self.assertIsInstance(connected_subgraph.outputs["one"], tf.Tensor)
      self.assertIsInstance(connected_subgraph.outputs["self"], check_type)
    check(dict)
    _copy_default_graph()
    check(base_info._UnserializableObject)
base.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _check_same_graph(self):
    """Checks that the module is not being connect to multiple Graphs.

    An instance of a Sonnet module 'owns' the variables it contains, and permits
    seamless variable sharing. As such, connecting a single module instance to
    multiple Graphs is not possible - this function will raise an error should
    that occur.

    Raises:
      DifferentGraphError: if the module is connected to a different Graph than
        it was previously used in.
    """
    current_graph = tf.get_default_graph()
    if self._graph is None:
      self._graph = current_graph
      self._set_module_info()
    elif self._graph != current_graph:
      raise DifferentGraphError("Cannot connect module to multiple Graphs.")
impl_helper_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testInferFeatureSchema(self):
    d = tf.placeholder(tf.int64, None)
    tensors = {
        'a': tf.placeholder(tf.float32, (None,)),
        'b': tf.placeholder(tf.string, (1, 2, 3)),
        'c': tf.placeholder(tf.int64, None),
        'd': d
    }
    d_column_schema = sch.ColumnSchema(tf.int64, [1, 2, 3],
                                       sch.FixedColumnRepresentation())
    api.set_column_schema(d, d_column_schema)
    schema = impl_helper.infer_feature_schema(tf.get_default_graph(), tensors)
    expected_schema = sch.Schema(column_schemas={
        'a': sch.ColumnSchema(tf.float32, [],
                              sch.FixedColumnRepresentation()),
        'b': sch.ColumnSchema(tf.string, [2, 3],
                              sch.FixedColumnRepresentation()),
        'c': sch.ColumnSchema(tf.int64, None,
                              sch.FixedColumnRepresentation()),
        'd': sch.ColumnSchema(tf.int64, [1, 2, 3],
                              sch.FixedColumnRepresentation())
    })
    self.assertEqual(schema, expected_schema)
training_q.py 文件源码 项目:tefla 作者: litan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _print_info(self, data_set, verbose):
        logger.info('Config:')
        logger.info(pprint.pformat(self.cnf))
        data_set.print_info()
        logger.info('Max epochs: %d' % self.num_epochs)
        if verbose > 0:
            util.show_vars(logger, self.trainable_scopes)

        # logger.debug("\n---Number of Regularizable vars in model:")
        # logger.debug(len(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)))

        if verbose > 3:
            all_ops = tf.get_default_graph().get_operations()
            logger.debug("\n---All ops in graph")
            names = map(lambda v: v.name, all_ops)
            for n in sorted(names):
                logger.debug(n)

        util.show_layer_shapes(self.training_end_points, logger)
training.py 文件源码 项目:tefla 作者: litan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _print_info(self, data_set, verbose):
        logger.info('Config:')
        logger.info(pprint.pformat(self.cnf))
        data_set.print_info()
        logger.info('Max epochs: %d' % self.num_epochs)
        if verbose > 0:
            util.show_vars(logger, self.trainable_scopes)

        # logger.debug("\n---Number of Regularizable vars in model:")
        # logger.debug(len(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)))

        if verbose > 3:
            all_ops = tf.get_default_graph().get_operations()
            logger.debug("\n---All ops in graph")
            names = map(lambda v: v.name, all_ops)
            for n in sorted(names):
                logger.debug(n)

        util.show_layer_shapes(self.training_end_points, logger)
hourglass_tiny.py 文件源码 项目:hourglasstensorlfow 作者: wbenbihi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _define_saver_summary(self, summary = True):
        """ Create Summary and Saver
        Args:
            logdir_train        : Path to train summary directory
            logdir_test     : Path to test summary directory
        """
        if (self.logdir_train == None) or (self.logdir_test == None):
            raise ValueError('Train/Test directory not assigned')
        else:
            with tf.device(self.cpu):
                self.saver = tf.train.Saver()
            if summary:
                with tf.device(self.gpu):
                    self.train_summary = tf.summary.FileWriter(self.logdir_train, tf.get_default_graph())
                    self.test_summary = tf.summary.FileWriter(self.logdir_test)
                    #self.weight_summary = tf.summary.FileWriter(self.logdir_train, tf.get_default_graph())
FM.py 文件源码 项目:nfm 作者: faychu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _initialize_weights(self):
        all_weights = dict()
        if self.pretrain_flag > 0:
            weight_saver = tf.train.import_meta_graph(self.save_file + '.meta')
            pretrain_graph = tf.get_default_graph()
            feature_embeddings = pretrain_graph.get_tensor_by_name('feature_embeddings:0')
            feature_bias = pretrain_graph.get_tensor_by_name('feature_bias:0')
            bias = pretrain_graph.get_tensor_by_name('bias:0')
            with tf.Session() as sess:
                weight_saver.restore(sess, self.save_file)
                fe, fb, b = sess.run([feature_embeddings, feature_bias, bias])
            all_weights['feature_embeddings'] = tf.Variable(fe, dtype=tf.float32)
            all_weights['feature_bias'] = tf.Variable(fb, dtype=tf.float32)
            all_weights['bias'] = tf.Variable(b, dtype=tf.float32)
        else:
            all_weights['feature_embeddings'] = tf.Variable(
                tf.random_normal([self.features_M, self.hidden_factor], 0.0, 0.01),
                name='feature_embeddings')  # features_M * K
            all_weights['feature_bias'] = tf.Variable(
                tf.random_uniform([self.features_M, 1], 0.0, 0.0), name='feature_bias')  # features_M * 1
            all_weights['bias'] = tf.Variable(tf.constant(0.0), name='bias')  # 1 * 1
        return all_weights
EEG_VGG_Model.py 文件源码 项目:EEGSignalAnalysis 作者: pprakhar30 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def Get_Pre_Trained_Weights(input_vars,name):
    with open("vgg16.tfmodel", mode='rb') as f:
        fileContent = f.read()

    graph_def = tf.GraphDef()
    graph_def.ParseFromString(fileContent)
    images = tf.placeholder(tf.float32,shape = (None, 64, 64, 3),name=name)
    tf.import_graph_def(graph_def, input_map={ "images": images })
    print "graph loaded from disk"

    graph = tf.get_default_graph()
    with tf.Session() as sess:
        init = tf.initialize_all_variables()
        sess.run(init)
        #batch = np.reshape(input_vars,(-1, 224, 224, 3))
        n_timewin = 7   
        convnets = []
        for i in xrange(n_timewin):
            feed_dict = { images:input_vars[:,i,:,:,:] }
            pool_tensor = graph.get_tensor_by_name("import/pool5:0")
            pool_tensor = sess.run(pool_tensor, feed_dict=feed_dict)
            convnets.append(tf.contrib.layers.flatten(pool_tensor))
        convpool = tf.pack(convnets, axis = 1)
        return convpool
svnh_semi_supervised_model_loaded_test.py 文件源码 项目:tf_serving_example 作者: Vetal1977 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def load_and_predict_with_saved_model():
    '''
    Loads saved as protobuf model and make prediction on a single image
    '''
    with tf.Session(graph=tf.Graph()) as sess:
        # restore save model
        export_dir = './gan-export/1'
        model = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], export_dir)
        # print(model)
        loaded_graph = tf.get_default_graph()

        # get necessary tensors by name
        input_tensor_name = model.signature_def['predict_images'].inputs['images'].name
        input_tensor = loaded_graph.get_tensor_by_name(input_tensor_name)
        output_tensor_name = model.signature_def['predict_images'].outputs['scores'].name
        output_tensor = loaded_graph.get_tensor_by_name(output_tensor_name)

        # make prediction
        image_file_name = './svnh_test_images/image_3.jpg'
        with open(image_file_name, 'rb') as f:
            image = f.read()
            scores = sess.run(output_tensor, {input_tensor: [image]})

        # print results
        print("Scores: {}".format(scores))
models.py 文件源码 项目:dataset 作者: analysiscenter 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def train_dynamic(self):
        print("inside train")
        model_spec = self.get_model_by_name(MyBatch.dynamic_model)
        #print("        action for a dynamic model", model_spec)
        session = self.pipeline.get_variable("session")
        with self.pipeline.get_variable("print lock"):
            print("\n\n ================= train dynamic ====================")
            print("----- default graph")
            #print(tf.get_default_graph().get_operations())
            print("----- session graph")
            print(session.graph.get_operations())
        input_data, model_output = model_spec
        res = session.run(model_output, feed_dict={input_data: self.data})
        self.pipeline.get_variable("loss history").append(res)
        #print("        ", int(res))
        return self
base_model.py 文件源码 项目:deepmodels 作者: learningsociety 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def eval_tensor(sess, input_tensor_name, input_val, output_tensor_name):
  """Get output value of a specific tensor.

  Assuming the default graph is used.

  Args:
    sess: tf session object.
    input_tensor_name: name of the input tensor.
    input_val: input value to the network.
    output_tensor_name: name of the output tensor.
  Returns:
    result of output tensor.
  """
  cur_graph = tf.get_default_graph()
  input_tensor = cur_graph.get_tensor_by_name(input_tensor_name)
  output_tensor = cur_graph.get_tensor_by_name(output_tensor_name)
  out_val = sess.run(output_tensor, feed_dict={input_tensor: input_val})
  return out_val
texture_network.py 文件源码 项目:texture-networks 作者: ProofByConstruction 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def conv_block(name, input_layer, kernel_size, out_channels):
    """
    Per Ulyanov et el, this is a block consisting of
        - Mirror pad (TODO)
        - Number of maps from a convolutional layer equal to out_channels (multiples of 8)
        - Spatial BatchNorm
        - LeakyReLu
    """
    with tf.get_default_graph().name_scope(name):
        in_channels = input_layer.get_shape().as_list()[-1]

        # Xavier initialization, http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
        # The application of this method here seems unorthodox since we're using ReLU, not sigmoid or tanh.
        low = -np.sqrt(6.0/(in_channels + out_channels))
        high = np.sqrt(6.0/(in_channels + out_channels))
        weights = tf.Variable(tf.random_uniform([kernel_size, kernel_size, in_channels, out_channels], minval=low, maxval=high), name='weights')
        biases = tf.Variable(tf.random_uniform([out_channels], minval=low, maxval=high), name='biases')
        # TODO: Mirror pad the conv2d? I'm not sure how important this is.
        conv = conv2d(input_layer, weights, biases)
        batch_norm = spatial_batch_norm(conv)
        relu = leaky_relu(batch_norm, .01)
        return relu
train.py 文件源码 项目:FPN 作者: xmyqsh 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, sess, network, imdb, roidb, output_dir, logdir, pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.net = network
        self.imdb = imdb
        self.roidb = roidb
        self.output_dir = output_dir
        self.pretrained_model = pretrained_model

        print 'Computing bounding-box regression targets...'
        if cfg.TRAIN.BBOX_REG:
            self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets(roidb)
        print 'done'

        # For checkpoint
        self.saver = tf.train.Saver(max_to_keep=100)
        self.writer = tf.summary.FileWriter(logdir=logdir,
                                             graph=tf.get_default_graph(),
                                             flush_secs=5)


问题


面经


文章

微信
公众号

扫码关注公众号