python类scalar_summary()的实例源码

model.py 文件源码 项目:text-classification2 作者: yuhui-lin 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _add_loss_summaries(total_loss):
    """Add summaries for losses in CNN model.
    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.
    Args:
        total_loss: Total loss from loss().
    Returns:
        loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))

    return loss_averages_op
model.py 文件源码 项目:Chinese-QA 作者: distantJing 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _build_loss(self):
        config = self.config
        JX = tf.shape(self.x)[2]
        M = tf.shape(self.x)[1]
        JQ = tf.shape(self.q)[1]
        loss_mask = tf.reduce_max(tf.cast(self.q_mask, 'float'), 1)
        losses = tf.nn.softmax_cross_entropy_with_logits(
            self.logits, tf.cast(tf.reshape(self.y, [-1, M * JX]), 'float'))
        ce_loss = tf.reduce_mean(loss_mask * losses)
        tf.add_to_collection('losses', ce_loss)
        ce_loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
            self.logits2, tf.cast(tf.reshape(self.y2, [-1, M * JX]), 'float')))
        tf.add_to_collection("losses", ce_loss2)

        self.loss = tf.add_n(tf.get_collection('losses', scope=self.scope), name='loss')
        tf.scalar_summary(self.loss.op.name, self.loss)
        tf.add_to_collection('ema/scalar', self.loss)
network.py 文件源码 项目:dist-dqn 作者: viswanathgs 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _init_loss(cls, config, q, expected_q, actions, reg_loss=None,
                 summaries=None):
    """
    Setup the loss function and apply regularization is provided.

    @return: loss_op
    """
    q_masked = tf.reduce_sum(tf.mul(q, actions), reduction_indices=[1])
    loss = tf.reduce_mean(tf.squared_difference(q_masked, expected_q))
    if reg_loss is not None:
      loss += config.reg_param * reg_loss

    if summaries is not None:
      summaries.append(tf.scalar_summary('loss', loss))

    return loss
ram.py 文件源码 项目:tensorflow-ram 作者: qingzew 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def grad(self, loc_mean_t, loc_t, h_t, prob, pred, labels):
        loss1, grads1 = self.grad_reinforcement(loc_mean_t, loc_t, h_t, prob, pred, labels)
        loss2, grads2 = self.grad_supervised(prob, labels)

        loss = (1 - self.lambda_) * loss1 + self.lambda_ * loss2

        grads = []
        for i in xrange(len(grads1)):
            grads.append((1 - self.lambda_) * grads1[i] + self.lambda_ * grads2[i])

        tvars = tf.trainable_variables()
        grads = zip(grads, tvars)

        tf.scalar_summary('loss', loss)
        tf.scalar_summary('loss_reinforcement', loss1)
        tf.scalar_summary('loss_supervised', loss2)

        return loss, grads
base_model.py 文件源码 项目:tensorflow-ram 作者: qingzew 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _activation_summary(self, x):
        """Helper to create summaries for activations.

        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.

        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        tensor_name = re.sub('%s_[0-9]*/' % 'tower', '', x.op.name)
        tf.histogram_summary(tensor_name + '/activations', x)
        tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
sim_matcher.py 文件源码 项目:deepmodels 作者: learningsociety 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train_model(self, train_anchor_batch, train_pos_batch, train_neg_batch,
                  model_params, train_params):
    # get embedding for all batches.
    all_batch = tf.concat(
        0, [train_anchor_batch, train_pos_batch, train_neg_batch])
    with tf.variable_scope("matcher"):
      all_feats, _ = self.build_model(all_batch, model_params)
      anchor_feats, pos_feats, neg_feats = tf.split(0, 3, all_feats)
    # compute loss.
    triplet_loss = dm_losses.triplet_loss(
        anchor_feats,
        pos_feats,
        neg_feats,
        0.2,
        loss_type=commons.LossType.TRIPLET_L2)
    tf.scalar_summary("losses/triplet_loss", triplet_loss)
    # run training.
    base_model.train_model_given_loss(triplet_loss, None, train_params)

  # TODO (jiefeng): use proper evaluation for matcher and test.
nerve_net.py 文件源码 项目:ultrasound-nerve-segmentation-in-tensorflow 作者: loliverhennigh 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def loss_image(prediction, mask):
  """Calc loss for predition on image of mask.
  Args.
    inputs: prediction image 
    mask: true image 

  Return:
    error: loss value
  """
  print(prediction.get_shape())
  print(mask.get_shape())
  #mask = tf.flatten(mask)
  #prediction = tf.flatten(prediction)
  intersection = tf.reduce_sum(prediction * mask)
  loss = -(2. * intersection + 1.) / (tf.reduce_sum(mask) + tf.reduce_sum(prediction) + 1.)
  tf.scalar_summary('loss', loss)
  return loss
model.py 文件源码 项目:various_residual_networks 作者: yuhui-lin 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _activation_summary(self, x):
        """Helper to create summaries for activations.
        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.
        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        # Error: these summaries cause high classifier error!!!
        # All inputs to node MergeSummary/MergeSummary must be from the same frame.

        # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name)
        # tf.histogram_summary(tensor_name + '/activations', x)
        # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
statistic.py 文件源码 项目:NAF-tensorflow 作者: carpedm20 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init__(self, sess, env_name, model_dir, variables, max_update_per_step, max_to_keep=20):
    self.sess = sess
    self.env_name = env_name
    self.max_update_per_step = max_update_per_step

    self.reset()
    self.max_avg_r = None

    with tf.variable_scope('t'):
      self.t_op = tf.Variable(0, trainable=False, name='t')
      self.t_add_op = self.t_op.assign_add(1)

    self.model_dir = model_dir
    self.saver = tf.train.Saver(variables + [self.t_op], max_to_keep=max_to_keep)
    self.writer = tf.train.SummaryWriter('./logs/%s' % self.model_dir, self.sess.graph)

    with tf.variable_scope('summary'):
      scalar_summary_tags = ['total r', 'avg r', 'avg q', 'avg v', 'avg a', 'avg l']

      self.summary_placeholders = {}
      self.summary_ops = {}

      for tag in scalar_summary_tags:
        self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag.replace(' ', '_'))
        self.summary_ops[tag]  = tf.scalar_summary('%s/%s' % (self.env_name, tag), self.summary_placeholders[tag])
cnn_model_noBN.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_conv_layer(self, scope_name, layer_input, filter_size, input_channels,
                       output_channels, padding='SAME', should_init_wb=True):
        with tf.variable_scope(scope_name):
            weights_shape = filter_size + [input_channels, output_channels]
            initial_weights, initial_bias = self.__get_init_params(scope_name, should_init_wb)
            self.total_weights += weights_shape[0] * weights_shape[1] * weights_shape[2] * weights_shape[3]
            self.logger.info('Weight shape:{} for scope:{}'.format(weights_shape, tf.get_variable_scope().name))
            conv_weights = self.__get_variable('weights', weights_shape, tf.float32,
                                               initializer=initial_weights)

            tf.scalar_summary(scope_name + '/weight_sparsity', tf.nn.zero_fraction(conv_weights))
            tf.histogram_summary(scope_name + '/weights', conv_weights)

            conv = tf.nn.conv2d(layer_input, conv_weights,
                                strides=[1, 1, 1, 1], padding=padding)

            conv_biases = self.__get_variable('biases', [output_channels], tf.float32,
                                                         initializer=initial_bias)

            layer_output = tf.nn.relu(tf.nn.bias_add(conv, conv_biases))

            return layer_output
summary_helper.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def add_activation_summary(x):
    """Helper to create summaries for activations.

    Creates a summary that provides a histogram of activations.
    Creates a summary that measure the sparsity of activations.

    Args:
      x: Tensor
    Returns:
      nothing
    """
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.

    tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    tf.histogram_summary(tensor_name + '/activations', x)
    tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
summary_helper.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def add_loss_summaries(total_loss):
    """
    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.

    Args:
      total_loss: Total loss from loss().
    Returns:
      loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name +' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))

    return loss_averages_op
cifar10.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
cifar10.py 文件源码 项目:SLAM 作者: sanjeevkumar42 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op
deepSpeech.py 文件源码 项目:deepSpeech 作者: fordDeepDSP 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _add_loss_summaries(total_loss):
    """Add summaries for losses in deepSpeech model.

    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.

    Args:
      total_loss: Total loss from loss().
    Returns:
      loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss;
    # do the same for the averaged version of the losses.
    for each_loss in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average
        # version of the loss as the original loss name.
        tf.scalar_summary(each_loss.op.name + ' (raw)', each_loss)
        tf.scalar_summary(each_loss.op.name, loss_averages.average(each_loss))

    return loss_averages_op
deepSpeech_train.py 文件源码 项目:deepSpeech 作者: fordDeepDSP 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def add_summaries(summaries, learning_rate, grads):
    """ Add summary ops"""

    # Track quantities for Tensorboard display
    summaries.append(tf.scalar_summary('learning_rate', learning_rate))
    # Add histograms for gradients.
    for grad, var in grads:
        if grad is not None:
            summaries.append(
                tf.histogram_summary(var.op.name +
                                     '/gradients', grad))
    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
        summaries.append(tf.histogram_summary(var.op.name, var))

    # Build the summary operation from the last tower summaries.
    summary_op = tf.merge_summary(summaries)
    return summary_op
model_cifar.py 文件源码 项目:deep_separation_contraction 作者: edouardoyallon 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def loss(logits, labels,n_class, scope='loss'):
  with tf.variable_scope(scope):
    # entropy loss
    targets = one_hot_embedding(labels, n_class)
    entropy_loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(logits, targets),
      name='entropy_loss')
    tf.add_to_collection('losses', entropy_loss)
    # weight l2 decay loss
    weight_l2_losses = [tf.nn.l2_loss(o) for o in tf.get_collection('weights')]
    weight_decay_loss = tf.mul(FLAGS.weight_decay, tf.add_n(weight_l2_losses),
      name='weight_decay_loss')
    tf.add_to_collection('losses', weight_decay_loss)
  for var in tf.get_collection('losses'):
    tf.scalar_summary('losses/' + var.op.name, var)
  # total loss
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
model_cifar_contract.py 文件源码 项目:deep_separation_contraction 作者: edouardoyallon 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def loss(logits, labels,n_class, scope='loss'):
  with tf.variable_scope(scope):
    # entropy loss
    targets = one_hot_embedding(labels, n_class)
    entropy_loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(logits, targets),
      name='entropy_loss')
    tf.add_to_collection('losses', entropy_loss)
    # weight l2 decay loss
    weight_l2_losses = [tf.nn.l2_loss(o) for o in tf.get_collection('weights')]
    weight_decay_loss = tf.mul(FLAGS.weight_decay, tf.add_n(weight_l2_losses),
      name='weight_decay_loss')
    tf.add_to_collection('losses', weight_decay_loss)
  for var in tf.get_collection('losses'):
    tf.scalar_summary('losses/' + var.op.name, var)
  # total loss
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
model_utils.py 文件源码 项目:deep_separation_contraction 作者: edouardoyallon 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.
  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summmary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op
facenet.py 文件源码 项目:real_time_face_recognition 作者: shanren7 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summmary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op


问题


面经


文章

微信
公众号

扫码关注公众号