python类to_float()的实例源码

lossFunction.py 文件源码 项目:dwt 作者: min2209 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def depthCELoss2(pred, gt, weight, ss, outputChannels=16):
    with tf.name_scope("depth_CE_loss"):
        pred = tf.reshape(pred, (-1, outputChannels))
        epsilon = tf.constant(value=1e-25)
        predSoftmax = tf.to_float(tf.nn.softmax(pred))

        gt = tf.one_hot(indices=tf.to_int32(tf.squeeze(tf.reshape(gt, (-1, 1)))), depth=outputChannels, dtype=tf.float32)
        ss = tf.to_float(tf.reshape(ss, (-1, 1)))
        weight = tf.to_float(tf.reshape(weight, (-1, 1)))

        crossEntropyScaling = tf.to_float([3.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])

        crossEntropy = -tf.reduce_sum(((1-gt)*tf.log(tf.maximum(1-predSoftmax, epsilon))
                                       + gt*tf.log(tf.maximum(predSoftmax, epsilon)))*ss*crossEntropyScaling*weight,
                                      reduction_indices=[1])

        crossEntropySum = tf.reduce_sum(crossEntropy, name="cross_entropy_sum")
        return crossEntropySum
loss_function.py 文件源码 项目:dwt 作者: min2209 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def depthCELoss2(pred, gt, weight, ss, outputChannels=16):
    with tf.name_scope("depth_CE_loss"):
        pred = tf.reshape(pred, (-1, outputChannels))
        epsilon = tf.constant(value=1e-25)
        predSoftmax = tf.to_float(tf.nn.softmax(pred))

        gt = tf.one_hot(indices=tf.to_int32(tf.squeeze(tf.reshape(gt, (-1, 1)))), depth=outputChannels, dtype=tf.float32)
        ss = tf.to_float(tf.reshape(ss, (-1, 1)))
        weight = tf.to_float(tf.reshape(weight, (-1, 1)))

        crossEntropyScaling = tf.to_float([3.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
        crossEntropy = -tf.reduce_sum(((1-gt)*tf.log(tf.maximum(1-predSoftmax, epsilon))
                                       + gt*tf.log(tf.maximum(predSoftmax, epsilon)))*ss*crossEntropyScaling*weight,
                                      reduction_indices=[1])

        crossEntropySum = tf.reduce_sum(crossEntropy, name="cross_entropy_sum")

        return crossEntropySum
seq2seq_model.py 文件源码 项目:conv_seq2seq 作者: tobyyouup 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def compute_loss(self, decoder_output, _features, labels):
    """Computes the loss for this model.

    Returns a tuple `(losses, loss)`, where `losses` are the per-batch
    losses and loss is a single scalar tensor to minimize.
    """
    #pylint: disable=R0201
    # Calculate loss per example-timestep of shape [B, T]

    losses = seq2seq_losses.cross_entropy_sequence_loss(
        logits=decoder_output.logits[:, :, :],
        targets=tf.transpose(labels["target_ids"][:, 1:], [1, 0]),
        sequence_length=labels["target_len"] - 1)

    # Calculate the average log perplexity
    loss = tf.reduce_sum(losses) / tf.to_float(
        tf.reduce_sum(labels["target_len"] - 1))

    return losses, loss
y_preprocessing.py 文件源码 项目:spoofnet-tensorflow 作者: yomna-safaa 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def preprocess_for_eval(image, output_height, output_width, resize_side, # YY: ):
                        sub_mean_pixel=True, use_per_img_std=False,
                        use_aspect_pres_resize=True):
  """Preprocesses the given image for evaluation.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    resize_side: The smallest side of the image for aspect-preserving resizing.

  Returns:
    A preprocessed image.
  """
  if use_aspect_pres_resize:
    image = _aspect_preserving_resize(image, resize_side)
  else:
    image = _square_resize(image, resize_side)
  image = _central_crop([image], output_height, output_width)[0]
  image.set_shape([output_height, output_width, 3])
  image = tf.to_float(image)
  return process_image_crop(image, sub_mean_pixel, use_per_img_std)
vgg_preprocessing.py 文件源码 项目:spoofnet-tensorflow 作者: yomna-safaa 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def preprocess_for_eval(image, output_height, output_width, resize_side):
  """Preprocesses the given image for evaluation.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    resize_side: The smallest side of the image for aspect-preserving resizing.

  Returns:
    A preprocessed image.
  """
  image = _aspect_preserving_resize(image, resize_side)
  image = _central_crop([image], output_height, output_width)[0]
  image.set_shape([output_height, output_width, 3])
  image = tf.to_float(image)
  return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
impl_helper_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testCreatePhasesWithTable(self):
    # Test a preprocessing function with table that can only be run after the
    # first analyzer has run.  Note converting an integerized string into a
    # float doesn't make much sense, but is a legal tensorflow computation.
    def preprocessing_fn(inputs):
      integerized = mappers.string_to_int(inputs['x'])
      integerized = tf.to_float(integerized)
      scaled_to_0_1 = integerized / analyzers.max(integerized)
      return {'x_scaled': scaled_to_0_1}

    input_schema = sch.Schema({
        'x': sch.ColumnSchema(tf.string, [], sch.FixedColumnRepresentation())
    })
    graph, _, _ = impl_helper.run_preprocessing_fn(
        preprocessing_fn, input_schema)
    phases = impl_helper.create_phases(graph)
    self.assertEqual(len(phases), 2)
    self.assertEqual(len(phases[0].analyzers), 1)
    self.assertEqual(len(phases[1].analyzers), 1)
    self.assertEqual(len(phases[0].table_initializers), 0)
    self.assertEqual(len(phases[1].table_initializers), 1)
loss.py 文件源码 项目:relaax 作者: deeplearninc 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_graph(self, actor, critic, cfg):
        self.ph_action = graph.Placeholder(np.float32, shape=(None, actor.action_size), name="ph_action")
        self.ph_advantage = graph.Placeholder(np.float32, shape=(None,), name="ph_adv")
        self.ph_discounted_reward = graph.Placeholder(np.float32, shape=(None,), name="ph_edr")

        mu, sigma2 = actor.node
        sigma2 += tf.constant(1e-8)

        # policy entropy
        self.entropy = -tf.reduce_mean(0.5 * (tf.log(2. * np.pi * sigma2) + 1.))

        # policy loss (calculation)
        b_size = tf.to_float(tf.size(self.ph_action.node) / actor.action_size)
        log_pi = tf.log(sigma2)
        x_prec = tf.exp(-log_pi)
        x_diff = tf.subtract(self.ph_action.node, mu)
        x_power = tf.square(x_diff) * x_prec * -0.5
        gaussian_nll = (tf.reduce_sum(log_pi, axis=1)
                        + b_size * tf.log(2. * np.pi)) / 2. - tf.reduce_sum(x_power, axis=1)

        self.policy_loss = -(tf.reduce_mean(gaussian_nll * self.ph_advantage.node) + cfg.entropy_beta * self.entropy)

        # value loss
        # (Learning rate for the Critic is sized by critic_scale parameter)
        self.value_loss = cfg.critic_scale * tf.reduce_mean(tf.square(self.ph_discounted_reward.node - critic.node))
utils.py 文件源码 项目:Adversarial_Video_Generation 作者: dyelax 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def psnr_error(gen_frames, gt_frames):
    """
    Computes the Peak Signal to Noise Ratio error between the generated images and the ground
    truth images.

    @param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the
                       generator model.
    @param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for
                      each frame in gen_frames.

    @return: A scalar tensor. The mean Peak Signal to Noise Ratio error over each frame in the
             batch.
    """
    shape = tf.shape(gen_frames)
    num_pixels = tf.to_float(shape[1] * shape[2] * shape[3])
    square_diff = tf.square(gt_frames - gen_frames)

    batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(square_diff, [1, 2, 3])))
    return tf.reduce_mean(batch_errors)
resnet_v1_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def create_test_input(batch_size, height, width, channels):
  """Create test input tensor.

  Args:
    batch_size: The number of images per batch or `None` if unknown.
    height: The height of each image or `None` if unknown.
    width: The width of each image or `None` if unknown.
    channels: The number of channels per image or `None` if unknown.

  Returns:
    Either a placeholder `Tensor` of dimension
      [batch_size, height, width, channels] if any of the inputs are `None` or a
    constant `Tensor` with the mesh grid values along the spatial dimensions.
  """
  if None in [batch_size, height, width, channels]:
    return tf.placeholder(tf.float32, (batch_size, height, width, channels))
  else:
    return tf.to_float(
        np.tile(
            np.reshape(
                np.reshape(np.arange(height), [height, 1]) +
                np.reshape(np.arange(width), [1, width]),
                [1, height, width, 1]),
            [batch_size, 1, 1, channels]))
lenet_preprocessing.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def preprocess_image(image, output_height, output_width, is_training):
  """Preprocesses the given image.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    is_training: `True` if we're preprocessing the image for training and
      `False` otherwise.

  Returns:
    A preprocessed image.
  """
  image = tf.to_float(image)
  image = tf.image.resize_image_with_crop_or_pad(
      image, output_width, output_height)
  image = tf.subtract(image, 128.0)
  image = tf.div(image, 128.0)
  return image
vgg_preprocessing.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def preprocess_for_eval(image, output_height, output_width, resize_side):
  """Preprocesses the given image for evaluation.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    resize_side: The smallest side of the image for aspect-preserving resizing.

  Returns:
    A preprocessed image.
  """
  image = _aspect_preserving_resize(image, resize_side)
  image = _central_crop([image], output_height, output_width)[0]
  image.set_shape([output_height, output_width, 3])
  image = tf.to_float(image)
  return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
lenet_preprocessing.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def preprocess_image(image, output_height, output_width, is_training):
  """Preprocesses the given image.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    is_training: `True` if we're preprocessing the image for training and
      `False` otherwise.

  Returns:
    A preprocessed image.
  """
  image = tf.to_float(image)
  image = tf.image.resize_image_with_crop_or_pad(
      image, output_height, output_width)
  image.set_shape([output_height, output_width, 1])
  image = tf.subtract(image, 0.5)
  image = tf.multiply(image, 2.0)
  return image
vgg_preprocessing.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def preprocess_for_eval(image, output_height, output_width, resize_side):
  """Preprocesses the given image for evaluation.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    resize_side: The smallest side of the image for aspect-preserving resizing.

  Returns:
    A preprocessed image.
  """
  image = _aspect_preserving_resize(image, resize_side)
  image = _central_crop([image], output_height, output_width)[0]
  image.set_shape([output_height, output_width, 3])
  image = tf.to_float(image)
  return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
thingtalk.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def constrain_value_logits(self, logits, curr_state):
        first_value_token = self.num_functions + self.num_begin_tokens + self.num_control_tokens
        num_value_tokens = self.output_size - first_value_token
        value_allowed_token_matrix = np.concatenate((self.allowed_token_matrix[:,:self.num_control_tokens], self.allowed_token_matrix[:,first_value_token:]), axis=1)

        with tf.name_scope('constrain_logits'):
            allowed_tokens = tf.gather(tf.constant(value_allowed_token_matrix), curr_state)
            assert allowed_tokens.get_shape()[1:] == (self.num_control_tokens + num_value_tokens,)

            constrained_logits = logits - tf.to_float(tf.logical_not(allowed_tokens)) * 1e+10
        return constrained_logits
gbrbm.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _initialize_vars(self):
        hidden_p = tf.nn.sigmoid(tf.matmul(self.x, self.w) + self.hidden_bias)
        visible_recon_p = tf.matmul(sample_bernoulli(hidden_p), tf.transpose(self.w)) + self.visible_bias

        if self.sample_visible:
            visible_recon_p = sample_gaussian(visible_recon_p, self.sigma)

        hidden_recon_p = tf.nn.sigmoid(tf.matmul(visible_recon_p, self.w) + self.hidden_bias)

        positive_grad = tf.matmul(tf.transpose(self.x), hidden_p)
        negative_grad = tf.matmul(tf.transpose(visible_recon_p), hidden_recon_p)

        def f(x_old, x_new):
            return self.momentum * x_old +\
                   self.learning_rate * x_new * (1 - self.momentum) / tf.to_float(tf.shape(x_new)[0])

        delta_w_new = f(self.delta_w, positive_grad - negative_grad)
        delta_visible_bias_new = f(self.delta_visible_bias, tf.reduce_mean(self.x - visible_recon_p, 0))
        delta_hidden_bias_new = f(self.delta_hidden_bias, tf.reduce_mean(hidden_p - hidden_recon_p, 0))

        update_delta_w = self.delta_w.assign(delta_w_new)
        update_delta_visible_bias = self.delta_visible_bias.assign(delta_visible_bias_new)
        update_delta_hidden_bias = self.delta_hidden_bias.assign(delta_hidden_bias_new)

        update_w = self.w.assign(self.w + delta_w_new)
        update_visible_bias = self.visible_bias.assign(self.visible_bias + delta_visible_bias_new)
        update_hidden_bias = self.hidden_bias.assign(self.hidden_bias + delta_hidden_bias_new)

        self.update_deltas = [update_delta_w, update_delta_visible_bias, update_delta_hidden_bias]
        self.update_weights = [update_w, update_visible_bias, update_hidden_bias]

        self.compute_hidden = tf.nn.sigmoid(tf.matmul(self.x, self.w) + self.hidden_bias)
        self.compute_visible = tf.matmul(self.compute_hidden, tf.transpose(self.w)) + self.visible_bias
        self.compute_visible_from_hidden = tf.matmul(self.y, tf.transpose(self.w)) + self.visible_bias
bgrbm.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _initialize_vars(self):
        hidden_p = tf.nn.sigmoid(tf.matmul(self.x, self.w) + self.hidden_bias)
        visible_recon_p = tf.nn.sigmoid(tf.matmul(sample_bernoulli(hidden_p), tf.transpose(self.w)) + self.visible_bias)
        hidden_recon_p = tf.matmul(visible_recon_p, self.w) + self.hidden_bias # gaussian unit (linear)

        positive_grad = tf.matmul(tf.transpose(self.x), hidden_p)
        negative_grad = tf.matmul(tf.transpose(visible_recon_p), hidden_recon_p)

        def f(x_old, x_new):
            return self.momentum * x_old +\
                   self.learning_rate * x_new * (1 - self.momentum) / tf.to_float(tf.shape(x_new)[0])

        delta_w_new = f(self.delta_w, positive_grad - negative_grad)
        delta_visible_bias_new = f(self.delta_visible_bias, tf.reduce_mean(self.x - visible_recon_p, 0))
        delta_hidden_bias_new = f(self.delta_hidden_bias, tf.reduce_mean(hidden_p - hidden_recon_p, 0))

        update_delta_w = self.delta_w.assign(delta_w_new)
        update_delta_visible_bias = self.delta_visible_bias.assign(delta_visible_bias_new)
        update_delta_hidden_bias = self.delta_hidden_bias.assign(delta_hidden_bias_new)

        update_w = self.w.assign(self.w + delta_w_new)
        update_visible_bias = self.visible_bias.assign(self.visible_bias + delta_visible_bias_new)
        update_hidden_bias = self.hidden_bias.assign(self.hidden_bias + delta_hidden_bias_new)

        self.update_deltas = [update_delta_w, update_delta_visible_bias, update_delta_hidden_bias]
        self.update_weights = [update_w, update_visible_bias, update_hidden_bias]

        self.compute_hidden = tf.matmul(self.x, self.w) + self.hidden_bias
        self.compute_visible = tf.nn.sigmoid(tf.matmul(self.compute_hidden, tf.transpose(self.w)) + self.visible_bias)
        self.compute_visible_from_hidden = tf.matmul(self.y, tf.transpose(self.w)) + self.visible_bias
bbrbm.py 文件源码 项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _initialize_vars(self):
        hidden_p = tf.nn.sigmoid(tf.matmul(self.x, self.w) + self.hidden_bias)
        visible_recon_p = tf.nn.sigmoid(tf.matmul(sample_bernoulli(hidden_p), tf.transpose(self.w)) + self.visible_bias)
        hidden_recon_p = tf.nn.sigmoid(tf.matmul(visible_recon_p, self.w) + self.hidden_bias)

        positive_grad = tf.matmul(tf.transpose(self.x), hidden_p)
        negative_grad = tf.matmul(tf.transpose(visible_recon_p), hidden_recon_p)

        def f(x_old, x_new):
            return self.momentum * x_old +\
                   self.learning_rate * x_new * (1 - self.momentum) / tf.to_float(tf.shape(x_new)[0])

        delta_w_new = f(self.delta_w, positive_grad - negative_grad)
        delta_visible_bias_new = f(self.delta_visible_bias, tf.reduce_mean(self.x - visible_recon_p, 0))
        delta_hidden_bias_new = f(self.delta_hidden_bias, tf.reduce_mean(hidden_p - hidden_recon_p, 0))

        update_delta_w = self.delta_w.assign(delta_w_new)
        update_delta_visible_bias = self.delta_visible_bias.assign(delta_visible_bias_new)
        update_delta_hidden_bias = self.delta_hidden_bias.assign(delta_hidden_bias_new)

        update_w = self.w.assign(self.w + delta_w_new)
        update_visible_bias = self.visible_bias.assign(self.visible_bias + delta_visible_bias_new)
        update_hidden_bias = self.hidden_bias.assign(self.hidden_bias + delta_hidden_bias_new)

        self.update_deltas = [update_delta_w, update_delta_visible_bias, update_delta_hidden_bias]
        self.update_weights = [update_w, update_visible_bias, update_hidden_bias]

        self.compute_hidden = tf.nn.sigmoid(tf.matmul(self.x, self.w) + self.hidden_bias)
        self.compute_visible = tf.nn.sigmoid(tf.matmul(self.compute_hidden, tf.transpose(self.w)) + self.visible_bias)
        self.compute_visible_from_hidden = tf.matmul(self.y, tf.transpose(self.w)) + self.visible_bias
util.py 文件源码 项目:squeezeDet-hand 作者: fyhtea 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def safe_exp(w, thresh):
  """Safe exponential function for tensors."""

  slope = np.exp(thresh)
  with tf.variable_scope('safe_exponential'):
    lin_region = tf.to_float(w > thresh)

    lin_out = slope*(w - thresh + 1.)
    exp_out = tf.exp(w)

    out = lin_region*lin_out + (1.-lin_region)*exp_out
  return out
distributions.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def neglogp(self, x):
        return 0.5 * U.sum(tf.square((x - self.mean) / self.std), axis=len(x.get_shape()) - 1) \
               + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \
               + U.sum(self.logstd, axis=len(x.get_shape()) - 1)
distributions.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def neglogp(self, x):
        return U.sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.to_float(x)), axis=1)


问题


面经


文章

微信
公众号

扫码关注公众号