python类int64()的实例源码

semisupervised.py 文件源码 项目:TensorFlow-VAE 作者: dancsalo 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_and_decode(self, example_serialized):
        """ Read and decode binarized, raw MNIST dataset from .tfrecords file generated by MNIST.py """
        num = self.flags['num_classes']

        # Parse features from binary file
        features = tf.parse_single_example(
            example_serialized,
            features={
                'image': tf.FixedLenFeature([], tf.string),
                'label': tf.FixedLenFeature([num], tf.int64, default_value=[-1] * num),
                'height': tf.FixedLenFeature([], tf.int64),
                'width': tf.FixedLenFeature([], tf.int64),
                'depth': tf.FixedLenFeature([], tf.int64),
            })
        # Return the converted data
        label = features['label']
        image = tf.decode_raw(features['image'], tf.float32)
        image.set_shape([784])
        image = tf.reshape(image, [28, 28, 1])
        image = (image - 0.5) * 2  # max value = 1, min value = -1
        return image, tf.cast(label, tf.int32)
supervised.py 文件源码 项目:TensorFlow-VAE 作者: dancsalo 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_and_decode(self, example_serialized):
        """ Read and decode binarized, raw MNIST dataset from .tfrecords file generated by MNIST.py """
        features = tf.parse_single_example(
            example_serialized,
            features={
                'image': tf.FixedLenFeature([], tf.string),
                'label': tf.FixedLenFeature([self.flags['num_classes']], tf.int64, default_value=[-1]*self.flags['num_classes']),
                'height': tf.FixedLenFeature([], tf.int64),
                'width': tf.FixedLenFeature([], tf.int64),
                'depth': tf.FixedLenFeature([], tf.int64),
            })
        # now return the converted data
        label = features['label']
        image = tf.decode_raw(features['image'], tf.float32)
        image.set_shape([784])
        image = tf.reshape(image, [28, 28, 1])
        image = (image - 0.5) * 2  # max value = 1, min value = -1
        return image, tf.cast(label, tf.int32)
cifar10.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      logits, labels, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
cifar10.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      logits, labels, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
cifar10.py 文件源码 项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      logits, labels, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
utils.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
cifar10_gtf.py 文件源码 项目:deep_learning_study 作者: jowettcz 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
impute.py 文件源码 项目:aboleth 作者: data61 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _impute2D(self, X_2D):
        r"""Mean impute a rank 2 tensor."""
        # Fill zeros in for missing data initially
        data_zeroed_missing_tf = X_2D * self.real_val_mask

        # Sum the real values in each column
        col_tot = tf.reduce_sum(data_zeroed_missing_tf, 0)

        # Divide column totals by the number of non-nan values
        num_values_col = tf.reduce_sum(self.real_val_mask, 0)
        num_values_col = tf.maximum(num_values_col,
                                    tf.ones(tf.shape(num_values_col)))
        col_nan_means = tf.div(col_tot, num_values_col)

        # Make an vector of the impute values for each missing point
        imputed_vals = tf.gather(col_nan_means, self.missing_ind[:, 1])

        # Fill the imputed values into the data tensor of zeros
        shape = tf.cast(tf.shape(data_zeroed_missing_tf), dtype=tf.int64)
        missing_imputed = tf.scatter_nd(self.missing_ind, imputed_vals, shape)

        X_with_impute = data_zeroed_missing_tf + missing_imputed

        return X_with_impute
impute.py 文件源码 项目:aboleth 作者: data61 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _impute2D(self, X_2D):
        r"""Randomly impute a rank 2 tensor."""
        # Fill zeros in for missing data initially
        data_zeroed_missing_tf = X_2D * self.real_val_mask

        # Divide column totals by the number of non-nan values
        col_draws = [n.sample(seed=next(seedgen)) for n in self.normal_array]
        # Make an vector of the impute values for each missing point
        imputed_vals = tf.gather(col_draws, self.missing_ind[:, 1])

        # Fill the imputed values into the data tensor of zeros
        shape = tf.cast(tf.shape(data_zeroed_missing_tf), dtype=tf.int64)
        missing_imputed = tf.scatter_nd(self.missing_ind, imputed_vals, shape)

        X_with_impute = data_zeroed_missing_tf + missing_imputed

        return X_with_impute
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testIsIterable(self):
    self.assertTrue(base_info._is_iterable((1, 2, 3)))
    self.assertTrue(base_info._is_iterable([1, 2, 3]))
    self.assertTrue(base_info._is_iterable({1: 1, 2: 2, 3: 3}))
    self.assertTrue(base_info._is_iterable(
        collections.OrderedDict([(1, 1), (2, 2)])))
    self.assertTrue(base_info._is_iterable(DumbNamedTuple(1, 2)))
    tensor = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    self.assertFalse(base_info._is_iterable(set([1, 2, 3])))
    self.assertFalse(base_info._is_iterable(tensor))
    sparse_tensor = tf.SparseTensor(
        indices=tf.placeholder(dtype=tf.int64, shape=(10, 2,)),
        values=tf.placeholder(dtype=tf.float32, shape=(10,)),
        dense_shape=tf.placeholder(dtype=tf.int64, shape=(2,)))
    self.assertFalse(base_info._is_iterable(sparse_tensor))
    self.assertFalse(base_info._is_iterable(NotATensor()))
    self.assertFalse(base_info._is_iterable("foo"))
    def generator():
      for count in xrange(3):
        self.assertFalse(False)
        yield count
    self.assertFalse(base_info._is_iterable(generator))
base_info_test.py 文件源码 项目:sonnet 作者: deepmind 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def testModuleInfo_sparsetensor(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    sparse_tensor = tf.SparseTensor(
        indices=tf.placeholder(dtype=tf.int64, shape=(10, 2,)),
        values=tf.placeholder(dtype=tf.float32, shape=(10,)),
        dense_shape=tf.placeholder(dtype=tf.int64, shape=(2,)))
    dumb(sparse_tensor)
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(
          connected_subgraph.inputs["inputs"], tf.SparseTensor)
      self.assertIsInstance(connected_subgraph.outputs, tf.SparseTensor)
    check()
    _copy_default_graph()
    check()
input_pipline.py 文件源码 项目:tensorflow_face 作者: ZhihengCV 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def parse_example_proto(example_serialized):
    """Parses an Example proto containing a training example of an image.

       The output of the build_image_data.py image preprocessing script is a dataset
       containing serialized Example protocol buffers.
    """
    # Dense features in Example proto.
    feature_map = {
        'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                            default_value=''),
        'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                                default_value=-1),
    }

    with tf.name_scope('decode_tfrecord'):
        features = tf.parse_single_example(example_serialized, feature_map)
        image = decode_jpeg(features['image/encoded'])
        label = tf.cast(features['image/class/label'], dtype=tf.int32)

        return image, label
model.py 文件源码 项目:web_page_classification 作者: yuhui-lin 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def loss(logits, labels):
    """Add L2Loss to all the trainable variables.
    Add summary for "Loss" and "Loss/avg".
    Args:
        logits: Logits from inference().
        labels: Labels from distorted_inputs or inputs(). 1-D tensor
                of shape [batch_size]
    Returns:
        Loss tensor of type float.
    """
    # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits,
        labels,
        name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')
impl_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testUniquesAnalyzerWithTokenization(self):
    def preprocessing_fn(inputs):
      return {
          'index': tft.string_to_int(tf.string_split(inputs['a']))
      }

    input_data = [{'a': 'hello hello world'}, {'a': 'hello goodbye world'}]
    input_metadata = dataset_metadata.DatasetMetadata({
        'a': sch.ColumnSchema(tf.string, [], sch.FixedColumnRepresentation())
    })
    expected_data = [{'index': [0, 0, 1]}, {'index': [0, 2, 1]}]
    expected_metadata = dataset_metadata.DatasetMetadata({
        'index': sch.ColumnSchema(
            sch.IntDomain(tf.int64, -1, 2, True,
                          'vocab_string_to_int_uniques'),
            [None], sch.ListColumnRepresentation())
    })
    self.assertAnalyzeAndTransformResults(
        input_data, input_metadata, preprocessing_fn, expected_data,
        expected_metadata)
example_proto_coder_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_example_proto_coder_error(self):
    input_schema = dataset_schema.from_feature_spec({
        '2d_vector_feature': tf.FixedLenFeature(shape=[2, 2], dtype=tf.int64),
    })
    coder = example_proto_coder.ExampleProtoCoder(input_schema)

    example_decoded_value = {
        '2d_vector_feature': [1, 2, 3]
    }
    example_proto_text = """
    features {
      feature { key: "1d_vector_feature"
                value { int64_list { value: [ 1, 2, 3 ] } } }
    }
    """
    example = tf.train.Example()
    text_format.Merge(example_proto_text, example)

    # Ensure that we raise an exception for trying to encode invalid data.
    with self.assertRaisesRegexp(ValueError, 'got wrong number of values'):
      _ = coder.encode(example_decoded_value)

    # Ensure that we raise an exception for trying to parse invalid data.
    with self.assertRaisesRegexp(ValueError, 'got wrong number of values'):
      _ = coder.decode(example.SerializeToString())
csv_coder_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_valency(self):
    data = ('11|12,"this is a ,text",categorical_value|other_value,1|3,89.0|'
            '91.0,12.0|15.0,False')
    feature_spec = self._INPUT_SCHEMA.as_feature_spec().copy()
    feature_spec['numeric1'] = tf.FixedLenFeature(shape=[2], dtype=tf.int64)
    schema = dataset_schema.from_feature_spec(feature_spec)
    multivalent_columns = ['numeric1', 'numeric2', 'y']
    coder = csv_coder.CsvCoder(self._COLUMNS, schema,
                               delimiter=',', secondary_delimiter='|',
                               multivalent_columns=multivalent_columns)
    expected_decoded = {'category1': ['categorical_value|other_value'],
                        'numeric1': [11, 12],
                        'numeric2': [89.0, 91.0],
                        'boolean1': [False],
                        'text1': 'this is a ,text',
                        'y': ([1, 3], [12.0, 15.0])}
    self._assert_encode_decode(coder, data, expected_decoded)

  # Test successful decoding with a single column.
impl_helper_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testInferFeatureSchema(self):
    d = tf.placeholder(tf.int64, None)
    tensors = {
        'a': tf.placeholder(tf.float32, (None,)),
        'b': tf.placeholder(tf.string, (1, 2, 3)),
        'c': tf.placeholder(tf.int64, None),
        'd': d
    }
    d_column_schema = sch.ColumnSchema(tf.int64, [1, 2, 3],
                                       sch.FixedColumnRepresentation())
    api.set_column_schema(d, d_column_schema)
    schema = impl_helper.infer_feature_schema(tf.get_default_graph(), tensors)
    expected_schema = sch.Schema(column_schemas={
        'a': sch.ColumnSchema(tf.float32, [],
                              sch.FixedColumnRepresentation()),
        'b': sch.ColumnSchema(tf.string, [2, 3],
                              sch.FixedColumnRepresentation()),
        'c': sch.ColumnSchema(tf.int64, None,
                              sch.FixedColumnRepresentation()),
        'd': sch.ColumnSchema(tf.int64, [1, 2, 3],
                              sch.FixedColumnRepresentation())
    })
    self.assertEqual(schema, expected_schema)
schema_io_v1_json_reader.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _from_sparse_feature_dict(feature_dict):
  """Translate a JSON sparse feature dict into a ColumnSchema."""
  # assume there is only one value column
  value_feature = feature_dict['valueFeature'][0]
  domain = _from_domain_dict(value_feature['domain'])

  index_feature_dicts = feature_dict['indexFeature']

  # int() is needed because protobuf JSON encodes int64 as string
  axes = [sch.Axis(int(index_feature_dict['size']))
          for index_feature_dict in index_feature_dicts]

  value_field_name = value_feature['name']
  index_fields = [sch.SparseIndexField(index_feature_dict['name'],
                                       index_feature_dict['isSorted'])
                  for index_feature_dict in index_feature_dicts]

  representation = sch.SparseColumnRepresentation(value_field_name,
                                                  index_fields)

  return sch.ColumnSchema(domain, axes, representation)
schema_io_v1_json_reader.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _from_domain_dict(domain):
  """Translate a JSON domain dict into a Domain."""
  if domain.get('ints') is not None:
    def maybe_to_int(s):
      return int(s) if s is not None else None
    return sch.IntDomain(
        tf.int64,
        maybe_to_int(domain['ints'].get('min')),
        maybe_to_int(domain['ints'].get('max')),
        domain['ints'].get('isCategorical'),
        domain['ints'].get('vocabularyFile', ''))
  if domain.get('floats') is not None:
    return sch.FloatDomain(tf.float32)
  if domain.get('strings') is not None:
    return sch.StringDomain(tf.string)
  if domain.get('bools') is not None:
    return sch.BoolDomain(tf.bool)
  raise ValueError('Unknown domain: {}'.format(domain))
input_fn_maker_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _make_raw_schema(shape, should_add_unused_feature=False):
  schema = sch.Schema()

  schema.column_schemas['raw_a'] = (sch.ColumnSchema(
      tf.int64, shape, sch.FixedColumnRepresentation(default_value=0)))

  schema.column_schemas['raw_b'] = (sch.ColumnSchema(
      tf.int64, shape, sch.FixedColumnRepresentation(default_value=1)))

  schema.column_schemas['raw_label'] = (sch.ColumnSchema(
      tf.int64, shape, sch.FixedColumnRepresentation(default_value=-1)))

  if should_add_unused_feature:
    schema.column_schemas['raw_unused'] = (sch.ColumnSchema(
        tf.int64, shape, sch.FixedColumnRepresentation(default_value=1)))

  return schema


问题


面经


文章

微信
公众号

扫码关注公众号