python类int64()的实例源码

dataset_schema_test.py 文件源码 项目:transform 作者: tensorflow 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_sequence_feature_not_supported(self):
    feature_spec = {
        # FixedLenSequenceFeatures
        'fixed_seq_bool':
            tf.FixedLenSequenceFeature(shape=[10], dtype=tf.bool),
        'fixed_seq_bool_allow_missing':
            tf.FixedLenSequenceFeature(
                shape=[5], dtype=tf.bool, allow_missing=True),
        'fixed_seq_int':
            tf.FixedLenSequenceFeature(shape=[5], dtype=tf.int64),
        'fixed_seq_float':
            tf.FixedLenSequenceFeature(shape=[5], dtype=tf.float32),
        'fixed_seq_string':
            tf.FixedLenSequenceFeature(shape=[5], dtype=tf.string),
    }

    with self.assertRaisesRegexp(ValueError,
                                 'DatasetSchema does not support '
                                 'FixedLenSequenceFeature yet.'):
      sch.from_feature_spec(feature_spec)
cifar10.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
cifar10.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
analyzer.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_whole_features(file_pattern, num_epochs=1):
    '''
    Return
        `feature`: `dict` whose keys are `sp`, `ap`, `f0`, `en`, `speaker`
    '''
    files = tf.gfile.Glob(file_pattern)
    print('{} files found'.format(len(files)))
    filename_queue = tf.train.string_input_producer(files, num_epochs=num_epochs)
    reader = tf.WholeFileReader()
    key, value = reader.read(filename_queue)
    print("Processing {}".format(key), flush=True)
    value = tf.decode_raw(value, tf.float32)
    value = tf.reshape(value, [-1, FEAT_DIM])
    return {
        'sp': value[:, :SP_DIM],
        'ap': value[:, SP_DIM : 2*SP_DIM],
        'f0': value[:, SP_DIM * 2],
        'en': value[:, SP_DIM * 2 + 1],
        'speaker': tf.cast(value[:, SP_DIM * 2 + 2], tf.int64),
        'filename': key,
    }
mnist.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def mnist_batcher_in_tanh_vector(
    batch_size,
    capacity=256,
    min_after_dequeue=128,
    ):
    (x, y), (_, _) = keras.datasets.mnist.load_data()
    x = tf.constant(x)
    x = tf.cast(x, tf.float32)
    x = keras.layers.Flatten()(x) / 127.5 - 1.
    y = tf.cast(y, tf.int64)

    return tf.train.shuffle_batch(
        [x, y],
        batch_size=batch_size,
        capacity=capacity,
        min_after_dequeue=min_after_dequeue,
        enqueue_many=True
    )
gan.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _validate(self, machine, n=10):
        N = n * n

        # same row same z
        z = tf.random_normal(shape=[n, self.arch['z_dim']])
        z = tf.tile(z, [1, n])
        z = tf.reshape(z, [N, -1])
        z = tf.Variable(z, trainable=False, dtype=tf.float32)       

        # same column same y 
        y = tf.range(0, 10, 1, dtype=tf.int64)
        y = tf.reshape(y, [-1, 1])
        y = tf.tile(y, [n, 1])

        Xh = machine.generate(z, y) # 100, 64, 64, 3
        # Xh = gray2jet(Xh)
        # Xh = make_png_thumbnail(Xh, n)
        Xh = make_png_jet_thumbnail(Xh, n)
        return Xh
gan.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _validate(self, machine, n=10):
        N = n * n
        z = np.random.normal(0., 1., size=[n, self.arch['z_dim']])
        z = np.concatenate([z] * n, axis=1)
        z = np.reshape(z, [N, -1]).astype(np.float32)  # consecutive rows
        y = np.asarray(
            [[5,   0,  0 ],
             [9,   0,  0 ],
             [12,  0,  0 ],
             [17,  0,  0 ],
             [19,  0,  0 ],
             [161, 0,  0 ],
             [170, 0,  0 ],
             [170, 16, 0 ],
             [161, 9,  4 ],
             [19,  24, 50]],
            dtype=np.int64)
        y = np.concatenate([y] * n, axis=0)
        Z = tf.constant(z)
        Y = tf.constant(y)
        Xh = machine.generate(Z, Y) # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
gan.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _validate(self, machine, n=10):
        N = n * n

        # same row same z
        z = tf.random_normal(shape=[n, self.arch['z_dim']])
        z = tf.tile(z, [1, n])
        z = tf.reshape(z, [N, -1])
        z = tf.Variable(z, trainable=False, dtype=tf.float32)       

        # same column same y 
        y = tf.range(0, 10, 1, dtype=tf.int64)
        y = tf.reshape(y, [-1,])
        y = tf.tile(y, [n,])

        Xh = machine.generate(z, y) # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
variables.py 文件源码 项目:Tensormodels 作者: asheshjain399 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def global_step(device=''):
  """Returns the global step variable.

  Args:
    device: Optional device to place the variable. It can be an string or a
      function that is called to get the device for the variable.

  Returns:
    the tensor representing the global step variable.
  """
  global_step_ref = tf.get_collection(tf.GraphKeys.GLOBAL_STEP)
  if global_step_ref:
    return global_step_ref[0]
  else:
    collections = [
        VARIABLES_TO_RESTORE,
        tf.GraphKeys.VARIABLES,
        tf.GraphKeys.GLOBAL_STEP,
    ]
    # Get the device for the variable.
    with tf.device(variable_device(device, 'global_step')):
      return tf.get_variable('global_step', shape=[], dtype=tf.int64,
                             initializer=tf.zeros_initializer,
                             trainable=False, collections=collections)
net_model.py 文件源码 项目:3D_CNN_jonas 作者: 2015ZxEE 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def loss(logits, label_batch):
    """
    Add L2Loss to all the trainable variables.
    Add summary for "Loss" and "Loss/avg".
    Args:
        logits      -> logits from inference()
        label_batch -> 1D tensor of [batch_size]
    Rtns:
        total_loss  -> float tensor
    """
    # Calculate the average cross entropy loss across the batch.
    label_batch        = tf.cast(label_batch,tf.int64)
    cross_entropy      = tf.nn.sparse_softmax_cross_entropy_with_logits(logits,
                                label_batch,name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses',cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')
srez_model.py 文件源码 项目:tensorflow-srgan 作者: olgaliak 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def create_optimizers(gene_loss, gene_var_list,
                      disc_loss, disc_var_list):    
    # TBD: Does this global step variable need to be manually incremented? I think so.
    global_step    = tf.Variable(0, dtype=tf.int64,   trainable=False, name='global_step')
    learning_rate  = tf.placeholder(dtype=tf.float32, name='learning_rate')

    gene_opti = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                       beta1=FLAGS.learning_beta1,
                                       name='gene_optimizer')
    disc_opti = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                       beta1=FLAGS.learning_beta1,
                                       name='disc_optimizer')

    gene_minimize = gene_opti.minimize(gene_loss, var_list=gene_var_list, name='gene_loss_minimize', global_step=global_step)

    disc_minimize     = disc_opti.minimize(disc_loss, var_list=disc_var_list, name='disc_loss_minimize', global_step=global_step)

    return (global_step, learning_rate, gene_minimize, disc_minimize)
criteo.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def make_input_schema(mode=tf.contrib.learn.ModeKeys.TRAIN):
  """Input schema definition.

  Args:
    mode: tf.contrib.learn.ModeKeys specifying if the schema is being used for
      train/eval or prediction.
  Returns:
    A `Schema` object.
  """
  result = ({} if mode == tf.contrib.learn.ModeKeys.INFER
            else {'clicked': tf.FixedLenFeature(shape=[], dtype=tf.int64)})
  for name in INTEGER_COLUMN_NAMES:
    result[name] = tf.FixedLenFeature(
        shape=[], dtype=tf.int64, default_value=-1)
  for name in CATEGORICAL_COLUMN_NAMES:
    result[name] = tf.FixedLenFeature(shape=[], dtype=tf.string,
                                      default_value='')

  return dataset_schema.from_feature_spec(result)
model.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def example_serving_input_fn(default_batch_size=None):
  """Build the serving inputs.

  Args:
    default_batch_size (int): Batch size for the tf.placeholder shape
  """
  feature_spec = {}
  for feat in CONTINUOUS_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.int64)

  for feat, _ in CATEGORICAL_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.string)

  example_bytestring = tf.placeholder(
      shape=[default_batch_size],
      dtype=tf.string,
  )
  features = tf.parse_example(example_bytestring, feature_spec)
  return features, {'example': example_bytestring}
reddit.py 文件源码 项目:cloudml-samples 作者: GoogleCloudPlatform 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def make_input_schema(mode=tf.contrib.learn.ModeKeys.TRAIN):
  """Input schema definition.

  Args:
    mode: tf.contrib.learn.ModeKeys specifying if the schema is being used for
      train/eval or prediction.
  Returns:
    A `Schema` object.
  """
  result = ({} if mode == tf.contrib.learn.ModeKeys.INFER else {
      'score': tf.FixedLenFeature(shape=[], dtype=tf.float32)
  })
  result.update({
      'subreddit': tf.FixedLenFeature(shape=[], dtype=tf.string),
      'author': tf.FixedLenFeature(shape=[], dtype=tf.string),
      'comment_body': tf.FixedLenFeature(shape=[], dtype=tf.string,
                                         default_value=''),
      'comment_parent_body': tf.FixedLenFeature(shape=[], dtype=tf.string,
                                                default_value=''),
      'toplevel': tf.FixedLenFeature(shape=[], dtype=tf.int64),
  })
  return dataset_schema.from_feature_spec(result)
clock_model.py 文件源码 项目:deep-time-reading 作者: felixduvallet 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def _loss_shared(logits, labels):
    """Add L2Loss to all the trainable variables.

    Add summary for "Loss" and "Loss/avg".
    Args:
      logits: Logits from inference().
      labels: Labels from distorted_inputs or inputs(). 1-D tensor
              of shape [batch_size]

    Returns:
      Loss tensor of type float.
    """
    # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits, labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')
tensorport.py 文件源码 项目:jack 作者: uclmr 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def create_torch_variable(self, value, gpu=False):
        """Convenience method that produces a tensor given the value of the defined type.

        Returns: a torch tensor of same type.
        """
        if isinstance(value, torch.autograd.Variable):
            if gpu:
                value = value.cuda()
            return value
        if not torch.is_tensor(value):
            if not isinstance(value, np.ndarray):
                value = np.array(value, dtype=self.dtype.as_numpy_dtype)
            else:
                value = value.astype(self.dtype.as_numpy_dtype)
            if value.size == 0:
                return value
            allowed = [tf.int16, tf.int32, tf.int64, tf.float16, tf.float32, tf.float64, tf.int8]
            if self.dtype in allowed:
                value = torch.autograd.Variable(torch.from_numpy(value))
        else:
            value = torch.autograd.Variable(value)
        if gpu and isinstance(value, torch.autograd.Variable):
            value = value.cuda()
        return value
utils.py 文件源码 项目:AssociativeRetrieval 作者: jxwufan 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read(self, shuffle=True, num_epochs=None):
    with tf.name_scope('input'):
      reader = tf.TFRecordReader()
      filename_queue = tf.train.string_input_producer([self.filename], num_epochs=num_epochs)
      _, serialized_input = reader.read(filename_queue)
      inputs = tf.parse_single_example(serialized_input,
                                       features={
                                       'inputs_seq': tf.FixedLenFeature([self.seq_len * 2 + 3], tf.int64),
                                       'output': tf.FixedLenFeature([1], tf.int64)
                                       })
      inputs_seq = inputs['inputs_seq']
      output = inputs['output']
      min_after_dequeue = 100
      if shuffle:
        inputs_seqs, outputs = tf.train.shuffle_batch([inputs_seq, output], batch_size=self.batch_size, num_threads=2, capacity=min_after_dequeue + 3 * self.batch_size, min_after_dequeue=min_after_dequeue)
      else:
        inputs_seqs, outputs = tf.train.batch([inputs_seq, output], batch_size=self.batch_size)
      return inputs_seqs, outputs
tensorflow_backend.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
tensorflow_backend.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def sparse_categorical_crossentropy(output, target, from_logits=False):
    '''Categorical crossentropy between an output tensor
    and a target tensor, where the target is an integer tensor.
    '''
    # Note: tf.nn.softmax_cross_entropy_with_logits
    # expects logits, Keras expects probabilities.
    if not from_logits:
        epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
        output = tf.clip_by_value(output, epsilon, 1 - epsilon)
        output = tf.log(output)

    output_shape = output.get_shape()
    res = tf.nn.sparse_softmax_cross_entropy_with_logits(
        tf.reshape(output, [-1, int(output_shape[-1])]),
        cast(flatten(target), 'int64'))
    if len(output_shape) == 3:
        # if our output includes timesteps we need to reshape
        return tf.reshape(res, [-1, int(output_shape[-2])])
    else:
        return res
tensorflow_backend.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def in_top_k(predictions, targets, k):
    '''Returns whether the `targets` are in the top `k` `predictions`

    # Arguments
        predictions: A tensor of shape batch_size x classess and type float32.
        targets: A tensor of shape batch_size and type int32 or int64.
        k: An int, number of top elements to consider.

    # Returns
        A tensor of shape batch_size and type bool. output_i is True if
        targets_i is within top-k values of predictions_i
    '''
    return tf.nn.in_top_k(predictions, targets, k)


# CONVOLUTIONS
utils_tf.py 文件源码 项目:blitznet 作者: dvornikita 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def data_augmentation(img, gt_bboxes, gt_cats, seg, config):
    params = config['train_augmentation']
    img = apply_with_random_selector(
        img,
        lambda x, ordering: photometric_distortions(x, ordering, params),
        num_cases=4)

    if seg is not None:
        img = tf.concat([img, tf.cast(seg, tf.float32)], axis=-1)

    img, gt_bboxes, gt_cats = scale_distortions(img, gt_bboxes, gt_cats,
                                                params)
    img, gt_bboxes = mirror_distortions(img, gt_bboxes, params)
    # XXX reference implementation also randomizes interpolation method
    img_size = config['image_size']
    img_out = tf.image.resize_images(img[..., :3], [img_size, img_size])
    gt_bboxes, gt_cats = filter_small_gt(gt_bboxes, gt_cats, 2/config['image_size'])

    if seg is not None:
        seg_shape = config['fm_sizes'][0]
        seg = tf.expand_dims(tf.expand_dims(img[..., 3], 0), -1)
        seg = tf.squeeze(tf.image.resize_nearest_neighbor(seg, [seg_shape, seg_shape]))
        seg = tf.cast(tf.round(seg), tf.int64)
    return img_out, gt_bboxes, gt_cats, seg
utils.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def assert_same_float_and_int_dtype(tensors_with_name, dtype=None):
    """
    Whether all types of tensors in `tensors` are the same and floating (or
    integer) type.

    :param tensors_with_name: A list of (tensor, tensor_name).
    :param dtype: Expected type. If `None`, depend on the type of tensors.
    :return: The type of `tensors`.
    """

    available_types = [tf.float16, tf.float32, tf.float64,
                       tf.int16, tf.int32, tf.int64]
    if dtype is None:
        return assert_same_specific_dtype(tensors_with_name, available_types)
    elif dtype in available_types:
        return assert_same_dtype(tensors_with_name, dtype)
    else:
        raise TypeError("The argument 'dtype' must be in %s" % available_types)
VGG.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def loss(self, logits, labels):
        """Add L2Loss to all the trainable variables.
        Args:
          logits: Logits from get().
          labels: Labels from train_inputs or inputs(). 1-D tensor
                  of shape [batch_size]

        Returns:
          Loss tensor of type float.
        """
        with tf.variable_scope('loss'):
            # Calculate the average cross entropy loss across the batch.
            labels = tf.cast(labels, tf.int64)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=labels, name='cross_entropy_per_example')
            cross_entropy_mean = tf.reduce_mean(
                cross_entropy, name='cross_entropy')
            tf.add_to_collection(LOSSES, cross_entropy_mean)

            # The total loss is defined as the cross entropy loss plus all of the weight
            # decay terms (L2 loss).
            error = tf.add_n(tf.get_collection(LOSSES), name='total_loss')

        return error
LeNetBN.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def loss(self, logits, labels):
        """Add L2Loss to all the trainable variables.
        Args:
          logits: Logits from get().
          labels: Labels from train_inputs or inputs(). 1-D tensor
                  of shape [batch_size]

        Returns:
          Loss tensor of type float.
        """
        with tf.variable_scope('loss'):
            # Calculate the average cross entropy loss across the batch.
            labels = tf.cast(labels, tf.int64)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=labels, name='cross_entropy_per_example')
            cross_entropy_mean = tf.reduce_mean(
                cross_entropy, name='cross_entropy')
            tf.add_to_collection(LOSSES, cross_entropy_mean)

            # The total loss is defined as the cross entropy loss plus all of the weight
            # decay terms (L2 loss).
            error = tf.add_n(tf.get_collection(LOSSES), name='total_loss')

        return error
VGGDirectDropout.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def loss(self, logits, labels):
        """Add L2Loss to all the trainable variables.
        Args:
          logits: Logits from get().
          labels: Labels from train_inputs or inputs(). 1-D tensor
                  of shape [batch_size]

        Returns:
          Loss tensor of type float.
        """
        with tf.variable_scope('loss'):
            # Calculate the average cross entropy loss across the batch.
            labels = tf.cast(labels, tf.int64)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=labels, name='cross_entropy_per_example')
            cross_entropy_mean = tf.reduce_mean(
                cross_entropy, name='cross_entropy')
            tf.add_to_collection(LOSSES, cross_entropy_mean)

            # The total loss is defined as the cross entropy loss plus all of the weight
            # decay terms (L2 loss).
            error = tf.add_n(tf.get_collection(LOSSES), name='total_loss')

        return error
LeNet.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def loss(self, logits, labels):
        """Add L2Loss to all the trainable variables.
        Args:
          logits: Logits from get().
          labels: Labels from train_inputs or inputs(). 1-D tensor
                  of shape [batch_size]

        Returns:
          Loss tensor of type float.
        """
        with tf.variable_scope('loss'):
            # Calculate the average cross entropy loss across the batch.
            labels = tf.cast(labels, tf.int64)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=labels, name='cross_entropy_per_example')
            cross_entropy_mean = tf.reduce_mean(
                cross_entropy, name='cross_entropy')
            tf.add_to_collection(LOSSES, cross_entropy_mean)

            # The total loss is defined as the cross entropy loss plus all of the weight
            # decay terms (L2 loss).
            error = tf.add_n(tf.get_collection(LOSSES), name='total_loss')
        return error
LeNetDirectDropout.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def loss(self, logits, labels):
        """Add L2Loss to all the trainable variables.
        Args:
          logits: Logits from get().
          labels: Labels from train_inputs or inputs(). 1-D tensor
                  of shape [batch_size]

        Returns:
          Loss tensor of type float.
        """
        with tf.variable_scope('loss'):
            # Calculate the average cross entropy loss across the batch.
            labels = tf.cast(labels, tf.int64)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=labels, name='cross_entropy_per_example')
            cross_entropy_mean = tf.reduce_mean(
                cross_entropy, name='cross_entropy')
            tf.add_to_collection(LOSSES, cross_entropy_mean)

            # The total loss is defined as the cross entropy loss plus all of the weight
            # decay terms (L2 loss).
            error = tf.add_n(tf.get_collection(LOSSES), name='total_loss')

        return error
LeNetDropout.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def loss(self, logits, labels):
        """Add L2Loss to all the trainable variables.
        Args:
          logits: Logits from get().
          labels: Labels from train_inputs or inputs(). 1-D tensor
                  of shape [batch_size]

        Returns:
          Loss tensor of type float.
        """
        with tf.variable_scope('loss'):
            # Calculate the average cross entropy loss across the batch.
            labels = tf.cast(labels, tf.int64)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=labels, name='cross_entropy_per_example')
            cross_entropy_mean = tf.reduce_mean(
                cross_entropy, name='cross_entropy')
            tf.add_to_collection(LOSSES, cross_entropy_mean)

            # The total loss is defined as the cross entropy loss plus all of the weight
            # decay terms (L2 loss).
            error = tf.add_n(tf.get_collection(LOSSES), name='total_loss')

        return error
VGGDropout.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def loss(self, logits, labels):
        """Add L2Loss to all the trainable variables.
        Args:
          logits: Logits from get().
          labels: Labels from train_inputs or inputs(). 1-D tensor
                  of shape [batch_size]

        Returns:
          Loss tensor of type float.
        """
        with tf.variable_scope('loss'):
            # Calculate the average cross entropy loss across the batch.
            labels = tf.cast(labels, tf.int64)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=labels, name='cross_entropy_per_example')
            cross_entropy_mean = tf.reduce_mean(
                cross_entropy, name='cross_entropy')
            tf.add_to_collection(LOSSES, cross_entropy_mean)

            # The total loss is defined as the cross entropy loss plus all of the weight
            # decay terms (L2 loss).
            error = tf.add_n(tf.get_collection(LOSSES), name='total_loss')

        return error
network.py 文件源码 项目:PixelDCN 作者: HongyangGao 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def cal_loss(self):
        one_hot_labels = tf.one_hot(
            self.labels, depth=self.conf.class_num,
            axis=self.channel_axis, name='labels/one_hot')
        losses = tf.losses.softmax_cross_entropy(
            one_hot_labels, self.predictions, scope='loss/losses')
        self.loss_op = tf.reduce_mean(losses, name='loss/loss_op')
        self.decoded_preds = tf.argmax(
            self.predictions, self.channel_axis, name='accuracy/decode_pred')
        correct_prediction = tf.equal(
            self.labels, self.decoded_preds,
            name='accuracy/correct_pred')
        self.accuracy_op = tf.reduce_mean(
            tf.cast(correct_prediction, tf.float32, name='accuracy/cast'),
            name='accuracy/accuracy_op')
        # weights = tf.cast(
        #     tf.greater(self.decoded_preds, 0, name='m_iou/greater'),
        #     tf.int32, name='m_iou/weights')
        weights = tf.cast(
            tf.less(self.labels, self.conf.channel, name='m_iou/greater'),
            tf.int64, name='m_iou/weights')
        labels = tf.multiply(self.labels, weights, name='m_iou/mul')
        self.m_iou, self.miou_op = tf.metrics.mean_iou(
            self.labels, self.decoded_preds, self.conf.class_num,
            weights, name='m_iou/m_ious')


问题


面经


文章

微信
公众号

扫码关注公众号