python类global_variables()的实例源码

npy2ckpt.py 文件源码 项目:tensorflow-deeplab-resnet 作者: DrSleep 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def main():
    """Create the model and start the training."""
    args = get_arguments()

    # Default image.
    image_batch = tf.constant(0, tf.float32, shape=[1, 321, 321, 3]) 
    # Create network.
    net = DeepLabResNetModel({'data': image_batch})
    var_list = tf.global_variables()

    # Set up tf session and initialize variables. 
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
          init = tf.global_variables_initializer()
          sess.run(init)

          # Loading .npy weights.
          net.load(args.npy_path, sess)

          # Saver for converting the loaded weights into .ckpt.
          saver = tf.train.Saver(var_list=var_list, write_version=1)
          save(saver, sess, args.save_dir)
BidirectionNet_tfidf.py 文件源码 项目:Sohu-LuckData-Image-Text-Matching-Competition 作者: WeitaoVan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_matchnet(self):
        self.sentence_fc2 = self.sentencenet(self.tfidf_feat, reuse=False)
        #self.sentence_fc2 = self.sentence_concat(self.tfidf_feat, self.lda_feat, reuse=False)
        self.image_fc2 = self.imagenet(self.image_feat, skip=self.is_skip, reuse=False)
        # compute loss
        if self.is_training:
            # triplet loss
            #sentence_fc2_neg = self.sentencenet(self.sentence_feat_neg, reuse=True)
            #image_fc2_neg = self.imagenet(self.image_feat_neg, skip=self.is_skip, reuse=True)            
            #self.image_center_triplet_loss = self.triplet_loss(self.image_fc2, self.sentence_fc2, sentence_fc2_neg)
            #self.sentence_center_triplet_loss = self.triplet_loss(self.sentence_fc2, self.image_fc2, image_fc2_neg)

            # top k triplet loss
            self.sentence_center_triplet_loss, self.image_center_triplet_loss = self.top_K_loss(
                self.sentence_fc2, self.image_fc2)
            self.reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
            # reg loss and total loss
            self.total_loss = tf.add_n([self.image_center_triplet_loss, self.sentence_center_triplet_loss] + self.reg_loss)
            self.saver = tf.train.Saver(max_to_keep=30)
            self.t_var = tf.trainable_variables()
            self.g_var = tf.global_variables()
            self.img_var = [var for var in self.t_var if 'image' in var.name]
BidirectionNet_4wtfidf.py 文件源码 项目:Sohu-LuckData-Image-Text-Matching-Competition 作者: WeitaoVan 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def build_matchnet(self):
        self.sentence_fc2 = self.sentencenet(self.tfidf_feat, reuse=False)
        #self.sentence_fc2 = self.sentence_concat(self.tfidf_feat, self.lda_feat, reuse=False)
        self.image_fc2 = self.imagenet(self.image_feat, skip=self.is_skip, reuse=False)
        # compute loss
        if self.is_training:
            # triplet loss
            #sentence_fc2_neg = self.sentencenet(self.sentence_feat_neg, reuse=True)
            #image_fc2_neg = self.imagenet(self.image_feat_neg, skip=self.is_skip, reuse=True)            
            #self.image_center_triplet_loss = self.triplet_loss(self.image_fc2, self.sentence_fc2, sentence_fc2_neg)
            #self.sentence_center_triplet_loss = self.triplet_loss(self.sentence_fc2, self.image_fc2, image_fc2_neg)

            # top k triplet loss
            self.sentence_center_triplet_loss, self.image_center_triplet_loss = self.top_K_loss(
                self.sentence_fc2, self.image_fc2)
            self.reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
            # reg loss and total loss
            self.total_loss = tf.add_n([self.image_center_triplet_loss, self.sentence_center_triplet_loss] + self.reg_loss)
            self.saver = tf.train.Saver(max_to_keep=30)
            self.t_var = tf.trainable_variables()
            self.g_var = tf.global_variables()
            self.img_var = [var for var in self.t_var if 'image' in var.name]
net_utils.py 文件源码 项目:tensorflow_yolo2 作者: wenxichen 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def restore_inception_resnet_variables_from_weight(sess, weights_path):

    adam_vars = [var for var in tf.global_variables()
                 if 'Adam' in var.name or
                 'beta1_power' in var.name or
                 'beta2_power' in var.name]
    uninit_vars = tf.get_collection(
        tf.GraphKeys.GLOBAL_VARIABLES, scope='InceptionResnetV2/Conv2d_1a_3x3') + adam_vars
    init_op = tf.variables_initializer(uninit_vars)

    variables_to_restore = slim.get_variables_to_restore(
        exclude=['InceptionResnetV2/Conv2d_1a_3x3'])
    for var in uninit_vars:
        if var in variables_to_restore:
            variables_to_restore.remove(var)
    saver = tf.train.Saver(variables_to_restore)

    print 'Initializing new variables to train from downloaded inception resnet weights'
    sess.run(init_op)
    saver.restore(sess, weights_path)

    return 0
tf_regression.py 文件源码 项目:tensorflow_to_lambda_serverless 作者: jacopotagliabue 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train(self, train_X, train_Y, learning_rate, training_epochs, model_output_dir=None):
        n_samples = train_X.shape[0]
        # Mean squared error
        cost = tf.reduce_sum(tf.pow(self.model - self.vars['Y'], 2)) / (2 * n_samples)
        # Gradient descent
        optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
        # Launch the graph
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            saver = tf.train.Saver(tf.global_variables())
            # Fit all training data
            for epoch in range(training_epochs):
                for x, y in zip(train_X, train_Y):
                    sess.run(optimizer, feed_dict={self.vars['X']: x, self.vars['Y']: y})
            # Save model locally
            saver.save(sess, model_output_dir + 'model.ckpt')

        return
layer.py 文件源码 项目:Dialog-System-with-GAN-model 作者: drcut 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def print_all_variables(train_only=False):
    """Print all trainable and non-trainable variables
    without tl.layers.initialize_global_variables(sess)
    Parameters
    ----------
    train_only : boolean
        If True, only print the trainable variables, otherwise, print all variables.
    """
    if train_only:
        t_vars = tf.trainable_variables()
        print("  [*] printing trainable variables")
    else:
        try: # TF1.0
            t_vars = tf.global_variables()
        except: # TF0.12
            t_vars = tf.all_variables()
        print("  [*] printing global variables")
    for idx, v in enumerate(t_vars):
        print("  var {:3}: {:15}   {}".format(idx, str(v.get_shape()), v.name))
layer.py 文件源码 项目:Dialog-System-with-GAN-model 作者: drcut 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_variables_with_name(name, train_only=True, printable=False):
    """Get variable list by a given name scope.
    >>> dense_vars = tl.layers.get_variable_with_name('dense', True, True)
    """
    print("  [*] geting variables with %s" % name)
    # tvar = tf.trainable_variables() if train_only else tf.all_variables()
    if train_only:
        t_vars = tf.trainable_variables()
    else:
        try: # TF1.0
            t_vars = tf.global_variables()
        except: # TF0.12
            t_vars = tf.all_variables()

    d_vars = [var for var in t_vars if name in var.name]
    if printable:
        for idx, v in enumerate(d_vars):
            print("  got {:3}: {:15}   {}".format(idx, v.name, str(v.get_shape())))
    return d_vars
gan.py 文件源码 项目:SequentialData-GAN 作者: jaesik817 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def build_discriminator(x_data, x_generated, keep_prob):
    x_data=tf.unstack(x_data,seq_size,1);
    x_generated=list(x_generated);
    x_in = tf.concat([x_data, x_generated],1);
    x_in=tf.unstack(x_in,seq_size,0);
    lstm_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(n_hidden), output_keep_prob=keep_prob) for _ in range(d_num_layers)]);
    with tf.variable_scope("dis") as dis:
      weights=tf.Variable(tf.random_normal([n_hidden, 1]));
      biases=tf.Variable(tf.random_normal([1]));
      outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x_in, dtype=tf.float32);
      res=tf.matmul(outputs[-1], weights) + biases;
      y_data = tf.nn.sigmoid(tf.slice(res, [0, 0], [batch_size, -1], name=None));
      y_generated = tf.nn.sigmoid(tf.slice(res, [batch_size, 0], [-1, -1], name=None));
      d_params=[v for v in tf.global_variables() if v.name.startswith(dis.name)];
    with tf.name_scope("desc_params"):
      for param in d_params:
        variable_summaries(param);
    return y_data, y_generated, d_params;
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def initialize():
    new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED
    get_session().run(tf.variables_initializer(new_variables))
    ALREADY_INITIALIZED.update(new_variables)
variable_mgr.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def savable_variables(self):
    """Returns a list/dict of savable variables to pass to tf.train.Saver."""
    return tf.global_variables()
variable_mgr.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_post_init_ops(self):
    # Copy initialized values for variables on GPU 0 to other GPUs.
    global_vars = tf.global_variables()
    var_by_name = dict([(v.name, v) for v in global_vars])
    post_init_ops = []
    for v in global_vars:
      split_name = v.name.split('/')
      # TODO(b/62630508): use more specific prefix than v or v0.
      if split_name[0] == 'v0' or not v.name.startswith('v'):
        continue
      split_name[0] = 'v0'
      copy_from = var_by_name['/'.join(split_name)]
      post_init_ops.append(v.assign(copy_from.read_value()))
    return post_init_ops
variable_mgr.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def savable_variables(self):
    """Return the set of variables used for saving/loading the model."""
    params = []
    for v in tf.global_variables():
      split_name = v.name.split('/')
      if split_name[0] == 'v0' or not v.name.startswith('v'):
        params.append(v)
    return params
variable_mgr.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_post_init_ops(self):
    """Copy initialized values for variables to other devices."""
    global_vars = tf.global_variables()
    var_by_name = dict([(v.name, v) for v in global_vars])
    post_init_ops = []
    for v in global_vars:
      split_name = v.name.split('/')
      # TODO(b/62630508): use more specific prefix than v or v0.
      if split_name[0] == 'v0' or not v.name.startswith('v'):
        continue
      split_name[0] = 'v0'
      copy_from = var_by_name['/'.join(split_name)]
      post_init_ops.append(v.assign(copy_from.read_value()))
    return post_init_ops
variable_mgr.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def savable_variables(self):
    """Return the set of variables used for saving/loading the model."""
    params = []
    for v in tf.global_variables():
      split_name = v.name.split('/')
      if split_name[0] == 'v0' or not v.name.startswith('v'):
        params.append(v)
    return params
train_val.py 文件源码 项目:HandDetection 作者: YunqiuXu 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def initialize(self, sess):
    # Initial file lists are empty
    np_paths = []
    ss_paths = []
    # Fresh train directly from ImageNet weights
    print('Loading initial model weights from {:s}'.format(self.pretrained_model))
    variables = tf.global_variables()
    # Initialize all variables first
    sess.run(tf.variables_initializer(variables, name='init'))
    var_keep_dic = self.get_variables_in_checkpoint_file(self.pretrained_model)
    # Get the variables to restore, ignoring the variables to fix
    variables_to_restore = self.net.get_variables_to_restore(variables, var_keep_dic)

    restorer = tf.train.Saver(variables_to_restore)
    restorer.restore(sess, self.pretrained_model)
    print('Loaded.')
    # Need to fix the variables before loading, so that the RGB weights are changed to BGR
    # For VGG16 it also changes the convolutional weights fc6 and fc7 to
    # fully connected weights
    self.net.fix_variables(sess, self.pretrained_model)
    print('Fixed.')
    last_snapshot_iter = 0
    rate = cfg.TRAIN.LEARNING_RATE
    stepsizes = list(cfg.TRAIN.STEPSIZE)

    return rate, last_snapshot_iter, stepsizes, np_paths, ss_paths
train_tf.py 文件源码 项目:DeepWorks 作者: daigo0927 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def vars(self):
        return [var for var in tf.global_variables() if self.name in var.name]
model.py 文件源码 项目:DeepWorks 作者: daigo0927 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def vars(self):
        return [var for var in tf.global_variables() if self.name in var.name]
model.py 文件源码 项目:DeepWorks 作者: daigo0927 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def vars(self):
        return [var for var in tf.global_variables() if self.name in var.name]
model.py 文件源码 项目:DeepWorks 作者: daigo0927 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def vars(self):
        return [var for var in tf.global_variables() if self.name in var.name]
model.py 文件源码 项目:DeepWorks 作者: daigo0927 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def vars(self):
        return [var for var in tf.global_variables() if self.name in var.name]


问题


面经


文章

微信
公众号

扫码关注公众号