python类squeeze()的实例源码

image_processing.py 文件源码 项目:revnet-public 作者: renmengye 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def eval_image(image, height, width, scope=None):
  """Prepare one image for evaluation.

  Args:
    image: 3-D float Tensor
    height: integer
    width: integer
    scope: Optional scope for name_scope.
  Returns:
    3-D float Tensor of prepared image.
  """
  with tf.name_scope(
      values=[image, height, width], name=scope, default_name='eval_image'):
    # Crop the central region of the image with an area containing 87.5% of
    # the original image.
    image = tf.image.central_crop(image, central_fraction=0.875)

    # Resize the image to the original height and width.
    image = tf.expand_dims(image, 0)
    image = tf.image.resize_bilinear(
        image, [height, width], align_corners=False)
    image = tf.squeeze(image, [0])
    return image
images.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def rgb2yuv(rgb):
    """
    Convert RGB image into YUV https://en.wikipedia.org/wiki/YUV
    """
    rgb2yuv_filter = tf.constant([[[[0.299, -0.169,
                                     0.499], [0.587, -0.331, -0.418],
                                    [0.114, 0.499, -0.0813]]]])
    rgb2yuv_bias = tf.constant([0., 0.5, 0.5])

    rgb = tf.expand_dims(rgb, 0)

    temp = tf.nn.conv2d(rgb, rgb2yuv_filter, [1, 1, 1, 1], 'SAME')
    temp = tf.nn.bias_add(temp, rgb2yuv_bias)
    temp = tf.squeeze(temp, [0])

    return temp


# Adapted from
# https://github.com/pavelgonchar/colornet/blob/master/train.py
images.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def yuv2rgb(yuv):
    """
    Convert YUV image into RGB https://en.wikipedia.org/wiki/YUV
    """
    yuv = tf.multiply(yuv, 255)
    yuv2rgb_filter = tf.constant([[[[1., 1., 1.], [0., -0.34413999, 1.77199996],
                                    [1.40199995, -0.71414, 0.]]]])
    yuv2rgb_bias = tf.constant([-179.45599365, 135.45983887, -226.81599426])

    yuv = tf.expand_dims(yuv, 0)
    temp = tf.nn.conv2d(yuv, yuv2rgb_filter, [1, 1, 1, 1], 'SAME')
    temp = tf.nn.bias_add(temp, yuv2rgb_bias)
    temp = tf.maximum(temp, tf.zeros(temp.get_shape(), dtype=tf.float32))
    temp = tf.minimum(temp,
                      tf.multiply(
                          tf.ones(temp.get_shape(), dtype=tf.float32), 255))
    temp = tf.divide(temp, 255)
    temp = tf.squeeze(temp, [0])
    return temp
metrics.py 文件源码 项目:dynamic-training-bench 作者: galeone 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def accuracy_op(logits, labels):
    """Define the accuracy between predictions (logits) and labels.
    Args:
        logits: a [batch_size, 1,1, num_classes] tensor or
                a [batch_size, num_classes] tensor
        labels: a [batch_size] tensor
    Returns:
        accuracy: the accuracy op
    """

    with tf.variable_scope('accuracy'):
        # handle fully convolutional classifiers
        logits_shape = logits.shape
        if len(logits_shape) == 4 and logits_shape[1:3] == [1, 1]:
            top_k_logits = tf.squeeze(logits, [1, 2])
        else:
            top_k_logits = logits
        top_k_op = tf.nn.in_top_k(top_k_logits, labels, 1)
        accuracy = tf.reduce_mean(tf.cast(top_k_op, tf.float32))

    return accuracy
doc2vec_train_doc_prediction.py 文件源码 项目:kaggle_redefining_cancer_treatment 作者: jorgemf 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def doc2vec_prediction_model(input_vectors, input_gene, input_variation, output_label, batch_size,
                             is_training, embedding_size, output_classes):
    # inputs/outputs
    input_vectors = tf.reshape(input_vectors, [batch_size, embedding_size])
    input_gene = tf.reshape(input_gene, [batch_size, embedding_size])
    input_variation = tf.reshape(input_variation, [batch_size, embedding_size])
    targets = None
    if output_label is not None:
        output_label = tf.reshape(output_label, [batch_size, 1])
        targets = tf.one_hot(output_label, axis=-1, depth=output_classes, on_value=1.0,
                             off_value=0.0)
        targets = tf.squeeze(targets, axis=1)

    net = tf.concat([input_vectors, input_gene, input_variation], axis=1)
    net = layers.fully_connected(net, embedding_size * 2, activation_fn=tf.nn.relu)
    net = layers.dropout(net, keep_prob=0.85, is_training=is_training)
    net = layers.fully_connected(net, embedding_size, activation_fn=tf.nn.relu)
    net = layers.dropout(net, keep_prob=0.85, is_training=is_training)
    net = layers.fully_connected(net, embedding_size // 4, activation_fn=tf.nn.relu)
    logits = layers.fully_connected(net, output_classes, activation_fn=None)

    return logits, targets
retrain.py 文件源码 项目:tensorflow-image-classifier 作者: burliEnterprises 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                            bottleneck_tensor):
  """Runs inference on an image to extract the 'bottleneck' summary layer.

  Args:
    sess: Current active TensorFlow Session.
    image_data: String of raw JPEG data.
    image_data_tensor: Input data layer in the graph.
    bottleneck_tensor: Layer before the final softmax.

  Returns:
    Numpy array of bottleneck values.
  """
  bottleneck_values = sess.run(
      bottleneck_tensor,
      {image_data_tensor: image_data})
  bottleneck_values = np.squeeze(bottleneck_values)
  return bottleneck_values
human_pose_nn.py 文件源码 项目:gait-recognition 作者: marian-margeta 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def euclidean_distance(self):
        x = tf.argmax(tf.reduce_max(self.smoothed_sigm_network, 1), 1)
        y = tf.argmax(tf.reduce_max(self.smoothed_sigm_network, 2), 1)

        x = tf.cast(x, tf.float32)
        y = tf.cast(y, tf.float32)

        dy = tf.squeeze(self.desired_points[:, 0, :])
        dx = tf.squeeze(self.desired_points[:, 1, :])

        sx = tf.squared_difference(x, dx)
        sy = tf.squared_difference(y, dy)

        l2_dist = tf.sqrt(sx + sy)

        return l2_dist
retrain.py 文件源码 项目:oversight 作者: hebenon 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                            bottleneck_tensor):
  """Runs inference on an image to extract the 'bottleneck' summary layer.

  Args:
    sess: Current active TensorFlow Session.
    image_data: String of raw JPEG data.
    image_data_tensor: Input data layer in the graph.
    bottleneck_tensor: Layer before the final softmax.

  Returns:
    Numpy array of bottleneck values.
  """
  bottleneck_values = sess.run(
      bottleneck_tensor,
      {image_data_tensor: image_data})
  bottleneck_values = np.squeeze(bottleneck_values)
  return bottleneck_values
model.py 文件源码 项目:tensorflow-deeplab-lfov 作者: DrSleep 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def prepare_label(self, input_batch, new_size):
        """Resize masks and perform one-hot encoding.

        Args:
          input_batch: input tensor of shape [batch_size H W 1].
          new_size: a tensor with new height and width.

        Returns:
          Outputs a tensor of shape [batch_size h w 21]
          with last dimension comprised of 0's and 1's only.
        """
        with tf.name_scope('label_encode'):
            input_batch = tf.image.resize_nearest_neighbor(input_batch, new_size) # As labels are integer numbers, need to use NN interp.
            input_batch = tf.squeeze(input_batch, squeeze_dims=[3]) # Reducing the channel dimension.
            input_batch = tf.one_hot(input_batch, depth=21)
        return input_batch
network.py 文件源码 项目:3D_Dense_Transformer_Networks 作者: JohnYC1995 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cal_loss(self):
        expand_annotations = tf.expand_dims(
            self.annotations, -1, name='annotations/expand_dims')
        one_hot_annotations = tf.squeeze(
            expand_annotations, axis=[self.channel_axis],
            name='annotations/squeeze')
        one_hot_annotations = tf.one_hot(
            one_hot_annotations, depth=self.conf.class_num,
            axis=self.channel_axis, name='annotations/one_hot')
        losses = tf.losses.softmax_cross_entropy(
            one_hot_annotations, self.predictions, scope='loss/losses')
        self.loss_op = tf.reduce_mean(losses, name='loss/loss_op')
        self.decoded_predictions = tf.argmax(
            self.predictions, self.channel_axis, name='accuracy/decode_pred')
        self.dice_accuracy_op, self.sub_dice_list = ops.dice_accuracy(self.decoded_predictions,\
                                self.annotations,self.conf.class_num)
        correct_prediction = tf.equal(
            self.annotations, self.decoded_predictions,
            name='accuracy/correct_pred')
        self.accuracy_op = tf.reduce_mean(
            tf.cast(correct_prediction, tf.float32, name='accuracy/cast'),
            name='accuracy/accuracy_op')
label_image.py 文件源码 项目:keras-to-tensorflow 作者: bitbionic 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_tensor_from_image_file(file_name, input_height=299, input_width=299,
                input_mean=0, input_std=255):
  input_name = "file_reader"
  output_name = "normalized"
  file_reader = tf.read_file(file_name, input_name)
  if file_name.endswith(".png"):
    image_reader = tf.image.decode_png(file_reader, channels = 3,
                                       name='png_reader')
  elif file_name.endswith(".gif"):
    image_reader = tf.squeeze(tf.image.decode_gif(file_reader,
                                                  name='gif_reader'))
  elif file_name.endswith(".bmp"):
    image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
  else:
    image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
                                        name='jpeg_reader')
  float_caster = tf.cast(image_reader, tf.float32)
  dims_expander = tf.expand_dims(float_caster, 0);
  resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
  normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
  sess = tf.Session()
  result = sess.run(normalized)

  return result
image_processing.py 文件源码 项目:dlbench 作者: hclhkbu 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def eval_image(image, height, width, scope=None):
    """Prepare one image for evaluation.

  Args:
    image: 3-D float Tensor
    height: integer
    width: integer
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor of prepared image.
  """
    with tf.op_scope([image, height, width], scope, 'eval_image'):
        # Crop the central region of the image with an area containing 87.5% of
        # the original image.
        image = tf.image.central_crop(image, central_fraction=0.875)

        # Resize the image to the original height and width.
        image = tf.expand_dims(image, 0)
        image = tf.image.resize_bilinear(image, [height, width],
                                         align_corners=False)
        image = tf.squeeze(image, [0])
        return image
image_processing.py 文件源码 项目:dlbench 作者: hclhkbu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def eval_image(image, height, width, scope=None):
    """Prepare one image for evaluation.

  Args:
    image: 3-D float Tensor
    height: integer
    width: integer
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor of prepared image.
  """
    with tf.name_scope(values=[image, height, width], name=scope, default_name='eval_image'):
        # Crop the central region of the image with an area containing 87.5% of
        # the original image.
        image = tf.image.central_crop(image, central_fraction=0.875)

        # Resize the image to the original height and width.
        image = tf.expand_dims(image, 0)
        image = tf.image.resize_bilinear(image, [height, width],
                                         align_corners=False)
        image = tf.squeeze(image, [0])
        return image
squeezenet_model.py 文件源码 项目:tensorflow_face 作者: ZhihengCV 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def squeezenet(inputs,
               num_classes=1000,
               is_training=True,
               keep_prob=0.5,
               spatial_squeeze=True,
               scope='squeeze'):
    """
    squeezenetv1.1
    """
    with tf.name_scope(scope, 'squeeze', [inputs]) as sc:
        end_points_collection = sc + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with slim.arg_scope([slim.conv2d, slim.max_pool2d,
                             slim.avg_pool2d, fire_module],
                            outputs_collections=end_points_collection):
            nets = squeezenet_inference(inputs, is_training, keep_prob)
            nets = slim.conv2d(nets, num_classes, [1, 1],
                               activation_fn=None,
                               normalizer_fn=None,
                               scope='logits')
            end_points = slim.utils.convert_collection_to_dict(end_points_collection)
            if spatial_squeeze:
                nets = tf.squeeze(nets, [1, 2], name='logits/squeezed')
            return nets, end_points
evaluation_y.py 文件源码 项目:spoofnet-tensorflow 作者: yomna-safaa 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_eval_ops_slim(logits, labels, one_hot=False, scope=''):
    slim = tf.contrib.slim
    with tf.name_scope(scope + '/Streaming'):
        if one_hot:
            labels = tf.argmax(labels, 1)

        predictions = tf.argmax(logits, 1)
        labels = tf.squeeze(labels)

        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'Accuracy': slim.metrics.streaming_accuracy(predictions, labels),
        })
        return names_to_values, names_to_updates


########################################################################
y_preprocessing.py 文件源码 项目:spoofnet-tensorflow 作者: yomna-safaa 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _aspect_preserving_resize(image, smallest_side):
  """Resize images preserving the original aspect ratio.

  Args:
    image: A 3-D image `Tensor`.
    smallest_side: A python integer or scalar `Tensor` indicating the size of
      the smallest side after resize.

  Returns:
    resized_image: A 3-D tensor containing the resized image.
  """
  smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)

  shape = tf.shape(image)
  height = shape[0]
  width = shape[1]
  new_height, new_width = _smallest_size_at_least(height, width, smallest_side)
  image = tf.expand_dims(image, 0)
  resized_image = tf.image.resize_bilinear(image, [new_height, new_width],
                                           align_corners=False)
  resized_image = tf.squeeze(resized_image)
  resized_image.set_shape([None, None, 3])
  return resized_image
y_preprocessing.py 文件源码 项目:spoofnet-tensorflow 作者: yomna-safaa 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _square_resize(image, side_size):
    """

    Args:
      image: A 3-D image `Tensor`.
      smallest_side: A python integer or scalar `Tensor` indicating the size of
        the smallest side after resize.

    Returns:
      resized_image: A 3-D tensor containing the resized image.
    """
    image = tf.expand_dims(image, 0)
    # resized_image = tf.image.resize_nearest_neighbor(image, [side_size, side_size]) ## YY: changed bilinear to nearest neighbor
    resized_image = tf.image.resize_bilinear(image, [side_size, side_size],
                                             align_corners=False)
    resized_image = tf.squeeze(resized_image)
    resized_image.set_shape([None, None, 3])
    return resized_image
y_vgg_preprocessing.py 文件源码 项目:spoofnet-tensorflow 作者: yomna-safaa 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _aspect_preserving_resize(image, smallest_side):
  """Resize images preserving the original aspect ratio.

  Args:
    image: A 3-D image `Tensor`.
    smallest_side: A python integer or scalar `Tensor` indicating the size of
      the smallest side after resize.

  Returns:
    resized_image: A 3-D tensor containing the resized image.
  """
  smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)

  shape = tf.shape(image)
  height = shape[0]
  width = shape[1]
  new_height, new_width = _smallest_size_at_least(height, width, smallest_side)
  image = tf.expand_dims(image, 0)
  resized_image = tf.image.resize_bilinear(image, [new_height, new_width],
                                           align_corners=False)
  resized_image = tf.squeeze(resized_image)
  resized_image.set_shape([None, None, 3])
  return resized_image
y_vgg_preprocessing.py 文件源码 项目:spoofnet-tensorflow 作者: yomna-safaa 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _square_resize(image, side_size):
    """

    Args:
      image: A 3-D image `Tensor`.
      smallest_side: A python integer or scalar `Tensor` indicating the size of
        the smallest side after resize.

    Returns:
      resized_image: A 3-D tensor containing the resized image.
    """
    image = tf.expand_dims(image, 0)
    resized_image = tf.image.resize_bilinear(image, [side_size, side_size],
                                             align_corners=False)
    resized_image = tf.squeeze(resized_image)
    resized_image.set_shape([None, None, 3])
    return resized_image
nn.py 文件源码 项目:bi-att-flow 作者: allenai 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0,
           is_train=None):
    if args is None or (nest.is_sequence(args) and not args):
        raise ValueError("`args` must be specified")
    if not nest.is_sequence(args):
        args = [args]

    flat_args = [flatten(arg, 1) for arg in args]
    if input_keep_prob < 1.0:
        assert is_train is not None
        flat_args = [tf.cond(is_train, lambda: tf.nn.dropout(arg, input_keep_prob), lambda: arg)
                     for arg in flat_args]
    flat_out = _linear(flat_args, output_size, bias, bias_start=bias_start, scope=scope)
    out = reconstruct(flat_out, args[0], 1)
    if squeeze:
        out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1])
    if wd:
        add_wd(wd)

    return out


问题


面经


文章

微信
公众号

扫码关注公众号