python类Graph()的实例源码

check_video_id.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def check_video_id():
  tf.set_random_seed(0)  # for reproducibility
  with tf.Graph().as_default():
    # convert feature_names and feature_sizes to lists of values
    feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
        FLAGS.feature_names, FLAGS.feature_sizes)

    # prepare a reader for each single model prediction result
    all_readers = []

    all_patterns = FLAGS.eval_data_patterns
    all_patterns = map(lambda x: x.strip(), all_patterns.strip().strip(",").split(","))
    for i in xrange(len(all_patterns)):
      reader = readers.EnsembleReader(
          feature_names=feature_names, feature_sizes=feature_sizes)
      all_readers.append(reader)

    input_reader = None
    input_data_pattern = None
    if FLAGS.input_data_pattern is not None:
      input_reader = readers.EnsembleReader(
          feature_names=["mean_rgb","mean_audio"], feature_sizes=[1024,128])
      input_data_pattern = FLAGS.input_data_pattern

    if FLAGS.eval_data_patterns is "":
      raise IOError("'eval_data_patterns' was not specified. " +
                     "Nothing to evaluate.")

    build_graph(
        all_readers=all_readers,
        input_reader=input_reader,
        input_data_pattern=input_data_pattern,
        all_eval_data_patterns=all_patterns,
        batch_size=FLAGS.batch_size)

    logging.info("built evaluation graph")
    video_id_equal = tf.get_collection("video_id_equal")[0]
    input_distance = tf.get_collection("input_distance")[0]

    check_loop(video_id_equal, input_distance, all_patterns)
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
classifier_tf.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
test_tf_qrnn_work.py 文件源码 项目:tensorflow_qrnn 作者: icoxfog417 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_qrnn(self):
        print("QRNN Working check")
        with tf.Graph().as_default() as qrnn:
            self.check_by_digits(qrnn, qrnn=5)
test_tf_qrnn_work.py 文件源码 项目:tensorflow_qrnn 作者: icoxfog417 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_baseline(self):
        print("Baseline(LSTM) Working check")
        with tf.Graph().as_default() as baseline:
            self.check_by_digits(baseline, baseline=True)
test_tf_qrnn_work.py 文件源码 项目:tensorflow_qrnn 作者: icoxfog417 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_random(self):
        print("Random Working check")
        with tf.Graph().as_default() as random:
            self.check_by_digits(random, random=True)
profile.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def load_metadata(model_dir):
  """Loads RunMetadata, Graph and OpLog from files
  """
  # Import RunMetadata
  run_meta_path = os.path.join(model_dir, "metadata/run_meta")
  run_meta = tf.RunMetadata()
  if gfile.Exists(run_meta_path):
    with gfile.GFile(run_meta_path, "rb") as file:
      run_meta.MergeFromString(file.read())
    print("Loaded RunMetadata from {}".format(run_meta_path))
  else:
    print("RunMetadata does not exist a {}. Skipping.".format(run_meta_path))

  # Import Graph
  graph_def_path = os.path.join(model_dir, "graph.pbtxt")
  graph = tf.Graph()
  if gfile.Exists(graph_def_path):
    with graph.as_default():
      _register_function_ops(CUSTOM_OP_FUNCTIONS)
      graph_def = tf.GraphDef()
      with gfile.GFile(graph_def_path, "rb") as file:
        text_format.Parse(file.read(), graph_def)
      tf.import_graph_def(graph_def, name="")
      print("Loaded Graph from {}".format(graph_def_path))
  else:
    print("Graph does not exist a {}. Skipping.".format(graph_def_path))

  # Import OpLog
  op_log_path = os.path.join(model_dir, "metadata/tfprof_log")
  op_log = tfprof_log_pb2.OpLog()
  if gfile.Exists(op_log_path):
    with gfile.GFile(op_log_path, "rb") as file:
      op_log.MergeFromString(file.read())
      print("Loaded OpLog from {}".format(op_log_path))
  else:
    print("OpLog does not exist a {}. Skipping.".format(op_log_path))

  return run_meta, graph, op_log
cifar10_eval.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default():
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    graph_def = tf.get_default_graph().as_graph_def()
    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir,
                                            graph_def=graph_def)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs)
bbbc006_eval.py 文件源码 项目:dcan-tensorflow 作者: lisjin 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def evaluate():
    """Eval BBBC006 for a number of steps."""
    with tf.Graph().as_default() as g:
        # Get images and labels for BBBC006.
        eval_data = FLAGS.eval_data == 'test'
        images, labels = bbbc006.inputs(eval_data=eval_data)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        c_fuse, s_fuse = bbbc006.inference(images, train=False)

        dice_op = bbbc006.dice_op(c_fuse, s_fuse, labels)

        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(
            bbbc006.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

        while True:
            eval_once(saver, dice_op, summary_writer, summary_op)
            if FLAGS.run_once:
                break
            time.sleep(FLAGS.eval_interval_secs)
bbbc006_multi_gpu_train.py 文件源码 项目:dcan-tensorflow 作者: lisjin 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def tower_loss(scope, images, labels):
    """Calculate the total loss on a single tower running the BBBC006 model.
    Args:
      scope: unique prefix string identifying the BBBC006 tower, e.g. 'tower_0'
      images: Images. 4D tensor of shape [batch_size, height, width, 3].
      labels: Labels. 1D tensor of shape [batch_size].

    Returns:
       Tensor of shape [] containing the total loss for a batch of data
    """

    # Build inference Graph.
    c_fuse, s_fuse = bbbc006.inference(images)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = bbbc006.loss(c_fuse, s_fuse, labels)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % bbbc006.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
server.py 文件源码 项目:han 作者: croath 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_graph(frozen_graph_filename):
    # We load the protobuf file from the disk and parse it to retrieve the
    # unserialized graph_def
    with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())

    # Then, we can use again a convenient built-in function to import a graph_def into the
    # current default Graph
    with tf.Graph().as_default() as graph:
        tf.import_graph_def(
            graph_def
        )
    return graph
benchmark_cnn.py 文件源码 项目:benchmarks 作者: tensorflow 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def run(self):
    """Run the benchmark task assigned to this process.

    Returns:
      Dictionary of statistics for training or eval.
    Raises:
       ValueError: unrecognized job name.
    """
    if self.params.job_name == 'ps':
      log_fn('Running parameter server %s' % self.task_index)
      self.cluster_manager.join_server()
      return {}

    # For distributed_all_reduce with multiple workers, drive
    # from a separate controller process.
    if self.params.variable_update == 'distributed_all_reduce':
      if self.params.job_name == 'worker':
        log_fn('Starting worker %s' % self.task_index)
        self.cluster_manager.join_server()
        return
      elif self.params.job_name and self.params.job_name != 'controller':
        raise ValueError('unrecognized job name: %s' % self.params.job_name)

    with tf.Graph().as_default():
      if self.params.eval:
        return self._eval_cnn()
      else:
        return self._benchmark_cnn()
model.py 文件源码 项目:cxflow-tensorflow 作者: Cognexa 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def graph(self) -> tf.Graph:
        """TF graph object."""
        return self._graph
data_pipeline.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, fnames, shuffle=True, num_epochs=None):
    """Init from a list of filenames to enqueue.

    Args:
      fnames: list of .tfrecords filenames to enqueue.
      shuffle: if true, shuffle the list at each epoch
    """
    self._fnames = fnames
    self._fname_queue = tf.train.string_input_producer(
        self._fnames,
        capacity=1000,
        shuffle=shuffle,
        num_epochs=num_epochs,
        shared_name='input_files')
    self._reader = tf.TFRecordReader()

    # Read first record to initialize the shape parameters
    with tf.Graph().as_default():
      fname_queue = tf.train.string_input_producer(self._fnames)
      reader = tf.TFRecordReader()
      _, serialized = reader.read(fname_queue)
      shapes = self._parse_shape(serialized)
      dtypes = self._parse_dtype(serialized)

      config = tf.ConfigProto()
      config.gpu_options.allow_growth = True

      with tf.Session(config=config) as sess:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        self.shapes = sess.run(shapes)
        self.shapes = {k: self.shapes[k+'_sz'].tolist() for k in self.FEATURES}

        self.dtypes = sess.run(dtypes)
        self.dtypes = {k: REVERSE_TYPEMAP[self.dtypes[k+'_dtype'][0]] for k in self.FEATURES}

        coord.request_stop()
        coord.join(threads)
actor_net.py 文件源码 项目:ddpg-aigym 作者: stevenpjg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self,num_states,num_actions):
        self.g=tf.Graph()
        with self.g.as_default():
            self.sess = tf.InteractiveSession()


            #actor network model parameters:
            self.W1_a, self.B1_a, self.W2_a, self.B2_a, self.W3_a, self.B3_a,\
            self.actor_state_in, self.actor_model = self.create_actor_net(num_states, num_actions)


            #target actor network model parameters:
            self.t_W1_a, self.t_B1_a, self.t_W2_a, self.t_B2_a, self.t_W3_a, self.t_B3_a,\
            self.t_actor_state_in, self.t_actor_model = self.create_actor_net(num_states, num_actions)

            #cost of actor network:
            self.q_gradient_input = tf.placeholder("float",[None,num_actions]) #gets input from action_gradient computed in critic network file
            self.actor_parameters = [self.W1_a, self.B1_a, self.W2_a, self.B2_a, self.W3_a, self.B3_a]
            self.parameters_gradients = tf.gradients(self.actor_model,self.actor_parameters,-self.q_gradient_input)#/BATCH_SIZE) 
            self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(zip(self.parameters_gradients,self.actor_parameters))  
            #initialize all tensor variable parameters:
            self.sess.run(tf.initialize_all_variables())    

            #To make sure actor and target have same intial parmameters copy the parameters:
            # copy target parameters
            self.sess.run([
                self.t_W1_a.assign(self.W1_a),
                self.t_B1_a.assign(self.B1_a),
                self.t_W2_a.assign(self.W2_a),
                self.t_B2_a.assign(self.B2_a),
                self.t_W3_a.assign(self.W3_a),
                self.t_B3_a.assign(self.B3_a)])

            self.update_target_actor_op = [
                self.t_W1_a.assign(TAU*self.W1_a+(1-TAU)*self.t_W1_a),
                self.t_B1_a.assign(TAU*self.B1_a+(1-TAU)*self.t_B1_a),
                self.t_W2_a.assign(TAU*self.W2_a+(1-TAU)*self.t_W2_a),
                self.t_B2_a.assign(TAU*self.B2_a+(1-TAU)*self.t_B2_a),
                self.t_W3_a.assign(TAU*self.W3_a+(1-TAU)*self.t_W3_a),
                self.t_B3_a.assign(TAU*self.B3_a+(1-TAU)*self.t_B3_a)]
imgconvnets.py 文件源码 项目:DmsMsgRcg 作者: bshao001 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def predict(model_scope, result_dir, result_file, img_features, k=1):
        """
        Args:
            model_scope: The variable_scope used when this model was trained.
            result_dir: The full path to the folder in which the result file locates.
            result_file: The file that saves the training results.
            img_features: A 2-D ndarray (matrix) each row of which holds the pixels as
                features of one image. One or more rows (image samples) can be requested
                to be predicted at once.
            k: Optional. Number of elements to be predicted.
        Returns:
            values and indices. Refer to tf.nn.top_k for details.
        """
        with tf.Session(graph=tf.Graph()) as sess:
            saver = tf.train.import_meta_graph(os.path.join(result_dir, result_file + ".meta"))
            saver.restore(sess, os.path.join(result_dir, result_file))

            # Retrieve the Ops we 'remembered'.
            logits = tf.get_collection(model_scope+"logits")[0]
            images_placeholder = tf.get_collection(model_scope+"images")[0]
            keep_prob_placeholder = tf.get_collection(model_scope+"keep_prob")[0]

            # Add an Op that chooses the top k predictions. Apply softmax so that
            # we can have the probabilities (percentage) in the output.
            eval_op = tf.nn.top_k(tf.nn.softmax(logits), k=k)

            values, indices = sess.run(eval_op, feed_dict={images_placeholder: img_features,
                                                           keep_prob_placeholder: 1.0})

            return values, indices
convert.py 文件源码 项目:tfplus 作者: renmengye 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def main(_):
    img = load_image("data/cat.jpg")
    print img
    img_p = preprocess(img)

    for layers in [50, 101, 152]:
        g = tf.Graph()
        with g.as_default():
            print "CONVERT", layers
            convert(g, img, img_p, layers)


问题


面经


文章

微信
公众号

扫码关注公众号