def random_access_problem(which=1):
import raputil as ru
if which == 1:
opts = ru.Problem.scenario1()
else:
opts = ru.Problem.scenario2()
p = ru.Problem(**opts)
x1 = p.genX(1)
y1 = p.fwd(x1)
A = p.S
M,N = A.shape
nbatches = int(math.ceil(1000 /x1.shape[1]))
prob = NumpyGenerator(p=p,nbatches=nbatches,A=A,opts=opts,iid=(which==1))
if which==2:
prob.maskX_ = tf.expand_dims( tf.constant( (np.arange(N) % (N//2) < opts['Nu']).astype(np.float32) ) , 1)
_,prob.noise_var = p.add_noise(y1)
unused = p.genYX(nbatches) # for legacy reasons -- want to compare against a previous run
(prob.yval, prob.xval) = p.genYX(nbatches)
(prob.yinit, prob.xinit) = p.genYX(nbatches)
import multiprocessing as mp
prob.nsubprocs = mp.cpu_count()
return prob
python类constant()的实例源码
def pwlin_grid(r_,rvar_,theta_,dtheta = .75):
"""piecewise linear with noise-adaptive grid spacing.
returns xhat,dxdr
where
q = r/dtheta/sqrt(rvar)
xhat = r * interp(q,theta)
all but the last dimensions of theta must broadcast to r_
e.g. r.shape = (500,1000) is compatible with theta.shape=(500,1,7)
"""
ntheta = int(theta_.get_shape()[-1])
scale_ = dtheta / tf.sqrt(rvar_)
ars_ = tf.clip_by_value( tf.expand_dims( tf.abs(r_)*scale_,-1),0.0, ntheta-1.0 )
centers_ = tf.constant( np.arange(ntheta),dtype=tf.float32 )
outer_distance_ = tf.maximum(0., 1.0-tf.abs(ars_ - centers_) ) # new dimension for distance to closest bin centers (or center)
gain_ = tf.reduce_sum( theta_ * outer_distance_,axis=-1) # apply the gain (learnable)
xhat_ = gain_ * r_
dxdr_ = tf.gradients(xhat_,r_)[0]
return (xhat_,dxdr_)
def interp1d_(xin_,xp,yp_):
"""
Interpolate a uniformly sampled piecewise linear function. Mapping elements
from xin_ to the result. Input values will be clipped to range of xp.
xin_ : input tensor (real)
xp : x grid (constant -- must be a 1d numpy array, uniformly spaced)
yp_ : tensor of the result values at the gridpoints xp
"""
import tensorflow as tf
x_ = tf.clip_by_value(xin_,xp.min(),xp.max())
dx = xp[1]-xp[0]
assert len(xp.shape)==1,'only 1d interpolation'
assert xp.shape[0]==int(yp_.get_shape()[0])
assert abs(np.diff(xp)/dx - 1.0).max() < 1e-6,'must be uniformly sampled'
newshape = [ ]
x1_ = tf.expand_dims(x_,-1)
dt = yp_.dtype
wt_ = tf.maximum(tf.constant(0.,dtype=dt), 1-abs(x1_ - tf.constant(xp,dtype=dt))/dx )
y_ = tf.reduce_sum(wt_ * yp_,axis=-1)
return y_
def __init__(self, config):
self.layers = {}
self.weights = {}
self.biases = {}
self.losses = {}
self.regular_losses = {}
self.trainable = {}
self.summaries = {}
# set parameters
self.lr_rates = {}
for key, val in config.lr_rates.iteritems():
self.lr_rates[key] = tf.get_variable('lr_rates/'+key, initializer=tf.constant(val), dtype=tf.float32)
self.momentum = tf.get_variable('momentum', initializer=tf.constant(config.momentum), dtype=tf.float32)
self.weight_decay = tf.get_variable('weight_decay', initializer=tf.constant(config.weight_decay), dtype=tf.float32)
self.lr_rate = tf.get_variable('lr_rate', initializer=tf.constant(config.lr_rate), dtype=tf.float32)
def _embed_sentences(self):
"""Tensorflow implementation of Simple but Tough-to-Beat Baseline"""
# Get word features
word_embeddings = self._get_embedding()
word_feats = tf.nn.embedding_lookup(word_embeddings, self.input)
# Get marginal estimates and scaling term
batch_size = tf.shape(word_feats)[0]
a = tf.pow(10.0, self._get_a_exp())
p = tf.constant(self.marginals, dtype=tf.float32, name='marginals')
q = tf.reshape(
a / (a + tf.nn.embedding_lookup(p, self.input)),
(batch_size, self.mx_len, 1)
)
# Compute initial sentence embedding
z = tf.reshape(1.0 / tf.to_float(self.input_lengths), (batch_size, 1))
S = z * tf.reduce_sum(q * word_feats, axis=1)
# Compute common component
S_centered = S - tf.reduce_mean(S, axis=0)
_, _, V = tf.svd(S_centered, full_matrices=False, compute_uv=True)
self.tf_ccx = tf.stop_gradient(tf.gather(tf.transpose(V), 0))
# Common component removal
ccx = tf.reshape(self._get_common_component(), (1, self.d))
sv = {'embeddings': word_embeddings, 'a': a, 'p': p, 'ccx': ccx}
return S - tf.matmul(S, ccx * tf.transpose(ccx)), sv
def _get_embedding(self):
"""
Return embedding tensor (either constant or variable)
Row 0 is 0 vector for no token
Row 1 is random initialization for UNKNOWN
Rows 2 : 2 + len(self.embedding_words) are pretrained initialization
Remaining rows are random initialization
"""
zero = tf.constant(0.0, dtype=tf.float32, shape=(1, self.d))
s = self.seed - 1
unk = tf.Variable(tf.random_normal((1, self.d), stddev=SD, seed=s))
pretrain = tf.Variable(self.embeddings_train, dtype=tf.float32)
vecs = [zero, unk, pretrain]
n_r = self.word_dict.num_words() - len(self.embedding_words_train)
if n_r > 0:
r = tf.Variable(tf.random_normal((n_r, self.d), stddev=SD, seed=s))
vecs.append(r)
self.U = tf.concat(vecs, axis=0, name='embedding_matrix')
return self.U
def pixel_wise_cross_entropy_loss_weighted(logits, labels, class_weights):
'''
Weighted cross entropy loss, with a weight per class
:param logits: Network output before softmax
:param labels: Ground truth masks
:param class_weights: A list of the weights for each class
:return: weighted cross entropy loss
'''
n_class = len(class_weights)
flat_logits = tf.reshape(logits, [-1, n_class])
flat_labels = tf.reshape(labels, [-1, n_class])
class_weights = tf.constant(np.array(class_weights, dtype=np.float32))
weight_map = tf.multiply(flat_labels, class_weights)
weight_map = tf.reduce_sum(weight_map, axis=1)
loss_map = tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels)
weighted_loss = tf.multiply(loss_map, weight_map)
loss = tf.reduce_mean(weighted_loss)
return loss
def image_reading(path: str, resized_size: Tuple[int, int]=None, data_augmentation: bool=False,
padding: bool=False) -> Tuple[tf.Tensor, tf.Tensor]:
# Read image
image_content = tf.read_file(path, name='image_reader')
image = tf.cond(tf.equal(tf.string_split([path], '.').values[1], tf.constant('jpg', dtype=tf.string)),
true_fn=lambda: tf.image.decode_jpeg(image_content, channels=1, try_recover_truncated=True), # TODO channels = 3 ?
false_fn=lambda: tf.image.decode_png(image_content, channels=1), name='image_decoding')
# Data augmentation
if data_augmentation:
image = augment_data(image)
# Padding
if padding:
with tf.name_scope('padding'):
image, img_width = padding_inputs_width(image, resized_size, increment=CONST.DIMENSION_REDUCTION_W_POOLING)
# Resize
else:
image = tf.image.resize_images(image, size=resized_size)
img_width = tf.shape(image)[1]
with tf.control_dependencies([tf.assert_equal(image.shape[:2], resized_size)]):
return image, img_width
base_aligner.py 文件源码
项目:almond-nnparser
作者: Stanford-Mobisocial-IoT-Lab
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def add_input_op(self, xavier):
with tf.variable_scope('embed'):
# first the embed the input
if self.config.train_input_embeddings:
if self.config.input_embedding_matrix:
initializer = tf.constant_initializer(self.config.input_embedding_matrix)
else:
initializer = xavier
input_embed_matrix = tf.get_variable('input_embedding',
shape=(self.config.dictionary_size, self.config.embed_size),
initializer=initializer)
else:
input_embed_matrix = tf.constant(self.config.input_embedding_matrix)
# dictionary size x embed_size
assert input_embed_matrix.get_shape() == (self.config.dictionary_size, self.config.embed_size)
# now embed the output
if self.config.train_output_embeddings:
output_embed_matrix = tf.get_variable('output_embedding',
shape=(self.config.output_size, self.config.output_embed_size),
initializer=xavier)
else:
output_embed_matrix = tf.constant(self.config.output_embedding_matrix)
assert output_embed_matrix.get_shape() == (self.config.output_size, self.config.output_embed_size)
inputs = tf.nn.embedding_lookup([input_embed_matrix], self.input_placeholder)
# batch size x max length x embed_size
assert inputs.get_shape()[1:] == (self.config.max_length, self.config.embed_size)
return inputs, output_embed_matrix
def calculate_loss_mix(self, predictions, predictions_class, labels, **unused_params):
with tf.name_scope("loss_mix"):
float_labels = tf.cast(labels, tf.float32)
if FLAGS.support_type=="class":
seq = np.loadtxt(FLAGS.class_file)
tf_seq = tf.one_hot(tf.constant(seq,dtype=tf.int32),FLAGS.encoder_size)
float_classes_org = tf.matmul(float_labels,tf_seq)
class_true = tf.ones(tf.shape(float_classes_org))
class_false = tf.zeros(tf.shape(float_classes_org))
float_classes = tf.where(tf.greater(float_classes_org, class_false), class_true, class_false)
cross_entropy_class = self.calculate_loss(predictions_class,float_classes)
elif FLAGS.support_type=="frequent":
float_classes = float_labels[:,0:FLAGS.encoder_size]
cross_entropy_class = self.calculate_loss(predictions_class,float_classes)
elif FLAGS.support_type=="encoder":
float_classes = float_labels
for i in range(FLAGS.encoder_layers):
var_i = np.loadtxt(FLAGS.autoencoder_dir+'autoencoder_layer%d.model' % i)
weight_i = tf.constant(var_i[:-1,:],dtype=tf.float32)
bias_i = tf.reshape(tf.constant(var_i[-1,:],dtype=tf.float32),[-1])
float_classes = tf.nn.xw_plus_b(float_classes,weight_i,bias_i)
if i<FLAGS.encoder_layers-1:
float_classes = tf.nn.relu(float_classes)
else:
float_classes = tf.nn.sigmoid(float_classes)
#float_classes = tf.nn.relu(tf.sign(float_classes - 0.5))
cross_entropy_class = self.calculate_mseloss(predictions_class,float_classes)
else:
float_classes = float_labels
for i in range(FLAGS.moe_layers-1):
float_classes = tf.concat((float_classes,float_labels),axis=1)
cross_entropy_class = self.calculate_loss(predictions_class,float_classes)
cross_entropy_loss = self.calculate_loss(predictions,labels)
return cross_entropy_loss + 0.1*cross_entropy_class
def calculate_loss_mix(self, predictions, predictions_class, labels, **unused_params):
with tf.name_scope("loss_softmax_mix"):
vocab_size = labels.get_shape().as_list()[1]
cross_entropy_class = tf.constant(0.0)
for i in range(FLAGS.moe_layers):
predictions_subclass = predictions_class[:,i*vocab_size:(i+1)*vocab_size]
cross_entropy_class = cross_entropy_class + self.calculate_loss(predictions_subclass,labels)
cross_entropy_loss = self.calculate_loss(predictions,labels)
return cross_entropy_loss + 0.1*cross_entropy_class
def calculate_loss(self, predictions, labels, **unused_params):
with tf.name_scope("loss_xent"):
epsilon = 10e-6
origin_labels = tf.cast(labels, tf.float32)
vocab_size = origin_labels.get_shape().as_list()[1]
float_labels = tf.tile(tf.reshape(origin_labels,[-1, 1, vocab_size]),[1,FLAGS.top_k,1])
float_labels = tf.reshape(float_labels,[-1,vocab_size])
cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
1 - float_labels) * tf.log(1 - predictions + epsilon)
cross_entropy_loss = tf.negative(cross_entropy_loss)
num_labels = tf.minimum(tf.reduce_sum(origin_labels,axis=1),tf.constant(FLAGS.top_k,dtype=tf.float32))
mask = tf.reshape(tf.sequence_mask(num_labels,tf.constant(FLAGS.top_k,dtype=tf.float32),dtype=tf.float32),[-1])
cross_entropy_loss = tf.reduce_sum(tf.reduce_sum(cross_entropy_loss, 1)*mask)/(tf.reduce_sum(mask)+epsilon)
return cross_entropy_loss
def threshold_from_predictions(y, y_pred, false_positive_margin=0, recall=1):
"""Determines a threshold for classifying examples as positive
Args:
y: labels
y_pred: scores from the classifier
recall: Threshold is set to classify at least this fraction of positive
labelled examples as positive
false_positive_margin: Threshold is set to acheive desired recall, and
then is extended to include an additional fraction of negative
labelled examples equal to false_positive_margin (This allows adding
a buffer to the threshold while maintaining a constant "cost")
"""
n_positive = np.count_nonzero(y)
n_negative = len(y) - n_positive
if n_positive == 0:
return np.max(y_pred)
if false_positive_margin == 0 and recall == 1:
return np.min(y_pred[y])
ind = np.argsort(y_pred)
y_pred_sorted = y_pred[ind]
y_sorted = y[ind]
so_far = [0, 0]
j = 0
for i in reversed(range(len(y_sorted))):
so_far[y_sorted[i]] += 1
if so_far[1] >= int(np.floor(recall * n_positive)):
j = i
break
so_far = [0, 0]
if false_positive_margin == 0:
return y_pred_sorted[j]
k = 0
for i in reversed(range(j)):
so_far[y_sorted[i]] += 1
if so_far[0] >= false_positive_margin * n_negative:
k = i
break
return y_pred_sorted[k]
def threshold_from_predictions(y, y_pred, false_positive_margin=0, recall=1):
"""Determines a threshold for classifying examples as positive
Args:
y: labels
y_pred: scores from the classifier
recall: Threshold is set to classify at least this fraction of positive
labelled examples as positive
false_positive_margin: Threshold is set to acheive desired recall, and
then is extended to include an additional fraction of negative
labelled examples equal to false_positive_margin (This allows adding
a buffer to the threshold while maintaining a constant "cost")
"""
n_positive = np.count_nonzero(y)
n_negative = len(y) - n_positive
if n_positive == 0:
return np.max(y_pred)
if false_positive_margin == 0 and recall == 1:
return np.min(y_pred[y])
ind = np.argsort(y_pred)
y_pred_sorted = y_pred[ind]
y_sorted = y[ind]
so_far = [0, 0]
j = 0
for i in reversed(range(len(y_sorted))):
so_far[y_sorted[i]] += 1
if so_far[1] >= int(np.floor(recall * n_positive)):
j = i
break
so_far = [0, 0]
if false_positive_margin == 0:
return y_pred_sorted[j]
k = 0
for i in reversed(range(j)):
so_far[y_sorted[i]] += 1
if so_far[0] >= false_positive_margin * n_negative:
k = i
break
return y_pred_sorted[k]
def threshold_from_predictions(y, y_pred, false_positive_margin=0, recall=1):
"""Determines a threshold for classifying examples as positive
Args:
y: labels
y_pred: scores from the classifier
recall: Threshold is set to classify at least this fraction of positive
labelled examples as positive
false_positive_margin: Threshold is set to acheive desired recall, and
then is extended to include an additional fraction of negative
labelled examples equal to false_positive_margin (This allows adding
a buffer to the threshold while maintaining a constant "cost")
"""
n_positive = np.count_nonzero(y)
n_negative = len(y) - n_positive
if n_positive == 0:
return np.max(y_pred)
if false_positive_margin == 0 and recall == 1:
return np.min(y_pred[y])
ind = np.argsort(y_pred)
y_pred_sorted = y_pred[ind]
y_sorted = y[ind]
so_far = [0, 0]
j = 0
for i in reversed(range(len(y_sorted))):
so_far[y_sorted[i]] += 1
if so_far[1] >= int(np.floor(recall * n_positive)):
j = i
break
so_far = [0, 0]
if false_positive_margin == 0:
return y_pred_sorted[j]
k = 0
for i in reversed(range(j)):
so_far[y_sorted[i]] += 1
if so_far[0] >= false_positive_margin * n_negative:
k = i
break
return y_pred_sorted[k]
def threshold_from_predictions(y, y_pred, false_positive_margin=0, recall=1):
"""Determines a threshold for classifying examples as positive
Args:
y: labels
y_pred: scores from the classifier
recall: Threshold is set to classify at least this fraction of positive
labelled examples as positive
false_positive_margin: Threshold is set to acheive desired recall, and
then is extended to include an additional fraction of negative
labelled examples equal to false_positive_margin (This allows adding
a buffer to the threshold while maintaining a constant "cost")
"""
n_positive = np.count_nonzero(y)
n_negative = len(y) - n_positive
if n_positive == 0:
return np.max(y_pred)
if false_positive_margin == 0 and recall == 1:
return np.min(y_pred[y])
ind = np.argsort(y_pred)
y_pred_sorted = y_pred[ind]
y_sorted = y[ind]
so_far = [0, 0]
j = 0
for i in reversed(range(len(y_sorted))):
so_far[y_sorted[i]] += 1
if so_far[1] >= int(np.floor(recall * n_positive)):
j = i
break
so_far = [0, 0]
if false_positive_margin == 0:
return y_pred_sorted[j]
k = 0
for i in reversed(range(j)):
so_far[y_sorted[i]] += 1
if so_far[0] >= false_positive_margin * n_negative:
k = i
break
return y_pred_sorted[k]
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
def gauss_log_prob(mu, logstd, x):
var = tf.exp(2*logstd)
gp = -tf.square(x - mu)/(2*var) - .5*tf.log(tf.constant(2*np.pi)) - logstd
return tf.reduce_sum(gp, [1])
def gauss_ent(mu, logstd):
h = tf.reduce_sum(logstd + tf.constant(0.5*np.log(2*np.pi*np.e), tf.float32))
return h