python类constant()的实例源码

layers.py 文件源码 项目:acdc_segmenter 作者: baumgach 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def get_weight_variable(shape, name=None, type='xavier_uniform', regularize=True, **kwargs):

    initialise_from_constant = False
    if type == 'xavier_uniform':
        initial = xavier_initializer(uniform=True, dtype=tf.float32)
    elif type == 'xavier_normal':
        initial = xavier_initializer(uniform=False, dtype=tf.float32)
    elif type == 'he_normal':
        initial = variance_scaling_initializer(uniform=False, factor=2.0, mode='FAN_IN', dtype=tf.float32)
    elif type == 'he_uniform':
        initial = variance_scaling_initializer(uniform=True, factor=2.0, mode='FAN_IN', dtype=tf.float32)
    elif type == 'caffe_uniform':
        initial = variance_scaling_initializer(uniform=True, factor=1.0, mode='FAN_IN', dtype=tf.float32)
    elif type == 'simple':
        stddev = kwargs.get('stddev', 0.02)
        initial = tf.truncated_normal(shape, stddev=stddev, dtype=tf.float32)
        initialise_from_constant = True
    elif type == 'bilinear':
        weights = _bilinear_upsample_weights(shape)
        initial = tf.constant(weights, shape=shape, dtype=tf.float32)
        initialise_from_constant = True
    else:
        raise ValueError('Unknown initialisation requested: %s' % type)

    if name is None:  # This keeps to option open to use unnamed Variables
        weight = tf.Variable(initial)
    else:
        if initialise_from_constant:
            weight = tf.get_variable(name, initializer=initial)
        else:
            weight = tf.get_variable(name, shape=shape, initializer=initial)

    if regularize:
        tf.add_to_collection('weight_variables', weight)

    return weight
losses.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def calculate_loss_mix2(self, predictions, predictions_class, predictions_encoder, labels, **unused_params):
    with tf.name_scope("loss_mix2"):
      float_labels = tf.cast(labels, tf.float32)
      float_encoders = float_labels
      for i in range(FLAGS.encoder_layers):
        var_i = np.loadtxt(FLAGS.autoencoder_dir+'autoencoder_layer%d.model' % i)
        weight_i = tf.constant(var_i[:-1,:],dtype=tf.float32)
        bias_i = tf.reshape(tf.constant(var_i[-1,:],dtype=tf.float32),[-1])
        float_encoders = tf.nn.xw_plus_b(float_encoders,weight_i,bias_i)
        if i<FLAGS.encoder_layers-1:
          float_encoders = tf.nn.relu(float_encoders)
        else:
          hidden_mean = tf.reduce_mean(float_encoders,axis=1,keep_dims=True)
          hidden_std = tf.sqrt(tf.reduce_mean(tf.square(float_encoders-hidden_mean),axis=1,keep_dims=True))
          float_encoders = (float_encoders-hidden_mean)/(hidden_std+1e-6)
          #float_encoders = tf.nn.sigmoid(float_encoders)
      cross_entropy_encoder = 0.1*self.calculate_mseloss(predictions_encoder,float_encoders)
      cross_entropy_loss = self.calculate_loss(predictions,labels)
      return cross_entropy_encoder+cross_entropy_loss, float_encoders
      #return cross_entropy_encoder, float_encoders
common.py 文件源码 项目:tf-image-interpreter 作者: ThoughtWorksInc 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _conv_layer(self, bottom, filter_size, filter_num, scope_name, bottom_channel=None, padding='SAME'):
    if not bottom_channel:
      _, _, _, bottom_channel = bottom.get_shape().as_list()
    with tf.variable_scope(scope_name):
      kernel = tf.Variable(
        tf.truncated_normal([*filter_size, bottom_channel, filter_num], dtype=tf.float32, stddev=1e-1),
        trainable=False,
        name='weights'
      )

      conv = tf.nn.conv2d(bottom, kernel, [1, 1, 1, 1], padding=padding)
      biases = tf.Variable(
        tf.constant(0.0, shape=[filter_num], dtype=tf.float32),
        trainable=True,
        name='bias'
      )
      out = tf.nn.bias_add(conv, biases)

      return out
TestUpd.py 文件源码 项目:How-to-Learn-from-Little-Data 作者: llSourcell 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def omniglot():

    sess = tf.InteractiveSession()

    """    def wrapper(v):
        return tf.Print(v, [v], message="Printing v")

    v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix')

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp')
    temp = wrapper(v)
    #with tf.control_dependencies([temp]):
    temp.eval()
    print 'Hello'"""

    def update_tensor(V, dim2, val):  # Update tensor V, with index(:,dim2[:]) by val[:]
        val = tf.cast(val, V.dtype)
        def body(_, (v, d2, chg)):
            d2_int = tf.cast(d2, tf.int32)
            return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]])
        Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update")
        return Z
eval_output_embeddings.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def bag_of_tokens(config, labels, label_lengths):
    if config.train_output_embeddings:
        with tf.variable_scope('embed', reuse=True):
            output_embeddings = tf.get_variable('output_embedding')
    else:
        output_embeddings = tf.constant(config.output_embedding_matrix)

    #everything_label_placeholder = tf.placeholder(shape=(None, config.max_length,), dtype=tf.int32)
    #everything_label_length_placeholder = tf.placeholder(shape=(None,), dtype=tf.int32)

    labels = tf.constant(np.array(labels))
    embedded_output = tf.gather(output_embeddings, labels)
    print('embedded_output before', embedded_output)
    #mask = tf.sequence_mask(label_lengths, maxlen=config.max_length, dtype=tf.float32)
    # note: this multiplication will broadcast the mask along all elements of the depth dimension
    # (which is why we run the expand_dims to choose how to broadcast)
    #embedded_output = embedded_output * tf.expand_dims(mask, axis=2)
    #print('embedded_output after', embedded_output)

    return tf.reduce_sum(embedded_output, axis=1)
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def highway(self, input_1, input_2, size_1, size_2, l2_penalty=1e-8, layer_size=1):
        output = input_2
        for idx in range(layer_size):
            with tf.name_scope('output_lin_%d' % idx):
                W = tf.Variable(tf.truncated_normal([size_2,size_1], stddev=0.1), name="W")
                b = tf.Variable(tf.constant(0.1, shape=[size_1]), name="b")
                tf.add_to_collection(name=tf.GraphKeys.REGULARIZATION_LOSSES, value=l2_penalty*tf.nn.l2_loss(W))
                tf.add_to_collection(name=tf.GraphKeys.REGULARIZATION_LOSSES, value=l2_penalty*tf.nn.l2_loss(b))
                output = tf.nn.relu(tf.nn.xw_plus_b(output,W,b))
            with tf.name_scope('transform_lin_%d' % idx):
                W = tf.Variable(tf.truncated_normal([size_1,size_1], stddev=0.1), name="W")
                b = tf.Variable(tf.constant(0.1, shape=[size_1]), name="b")
                tf.add_to_collection(name=tf.GraphKeys.REGULARIZATION_LOSSES, value=l2_penalty*tf.nn.l2_loss(W))
                tf.add_to_collection(name=tf.GraphKeys.REGULARIZATION_LOSSES, value=l2_penalty*tf.nn.l2_loss(b))
                transform_gate = tf.sigmoid(tf.nn.xw_plus_b(input_1,W,b))
            carry_gate = tf.constant(1.0) - transform_gate
            output = transform_gate * output + carry_gate * input_1
        return output
frame_level_models.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def conv_block(self, input, out_size, layer, kernalsize=3, l2_penalty=1e-8, shortcut=False):
        in_shape = input.get_shape().as_list()
        if layer>0:
            filter_shape = [kernalsize, 1, in_shape[3], out_size]
        else:
            filter_shape = [kernalsize, in_shape[2], 1, out_size]
        W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W-%s" % layer)
        b = tf.Variable(tf.constant(0.1, shape=[out_size]), name="b-%s" % layer)
        tf.add_to_collection(name=tf.GraphKeys.REGULARIZATION_LOSSES, value=l2_penalty*tf.nn.l2_loss(W))
        tf.add_to_collection(name=tf.GraphKeys.REGULARIZATION_LOSSES, value=l2_penalty*tf.nn.l2_loss(b))
        if layer>0:
            conv = tf.nn.conv2d(input, W, strides=[1, 1, 1, 1], padding="SAME", name="conv-%s" % layer)
        else:
            conv = tf.nn.conv2d(input, W, strides=[1, 1, 1, 1], padding="VALID", name="conv-%s" % layer)
        if shortcut:
            shortshape = [1,1,in_shape[3], out_size]
            Ws = tf.Variable(tf.truncated_normal(shortshape, stddev=0.05), name="Ws-%s" % layer)
            tf.add_to_collection(name=tf.GraphKeys.REGULARIZATION_LOSSES, value=l2_penalty*tf.nn.l2_loss(Ws))
            conv = conv + tf.nn.conv2d(input, Ws, strides=[1, 1, 1, 1], padding="SAME", name="conv-shortcut-%s" % layer)
        h = tf.nn.bias_add(conv, b)
        h2 = tf.nn.relu(tf.contrib.layers.batch_norm(h, center=True, scale=True, epsilon=1e-5, decay=0.9), name="relu-%s" % layer)

        return h2
rnn_cell_test.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_without_residuals(self):
    inputs = tf.constant(np.random.randn(1, 2))
    state = (tf.constant(np.random.randn(1, 2)),
             tf.constant(np.random.randn(1, 2)))

    with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
      standard_cell = tf.contrib.rnn.MultiRNNCell(
          [tf.contrib.rnn.GRUCell(2) for _ in range(2)], state_is_tuple=True)
      res_standard = standard_cell(inputs, state, scope="standard")

      test_cell = rnn_cell.ExtendedMultiRNNCell(
          [tf.contrib.rnn.GRUCell(2) for _ in range(2)])
      res_test = test_cell(inputs, state, scope="test")

    with self.test_session() as sess:
      sess.run([tf.global_variables_initializer()])
      res_standard_, res_test_, = sess.run([res_standard, res_test])

    # Make sure it produces the same results as the standard cell
    self.assertAllClose(res_standard_[0], res_test_[0])
    self.assertAllClose(res_standard_[1][0], res_test_[1][0])
    self.assertAllClose(res_standard_[1][1], res_test_[1][1])
rnn_cell_test.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _test_with_residuals(self, inputs, **kwargs):
    """Runs the cell in a session"""
    inputs = tf.convert_to_tensor(inputs)
    state = (tf.constant(np.random.randn(1, 2)),
             tf.constant(np.random.randn(1, 2)))

    with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
      test_cell = rnn_cell.ExtendedMultiRNNCell(
          [tf.contrib.rnn.GRUCell(2) for _ in range(2)],
          residual_connections=True,
          **kwargs)
      res_test = test_cell(inputs, state, scope="test")

    with self.test_session() as sess:
      sess.run([tf.global_variables_initializer()])
      return sess.run(res_test)
beam_search_test.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_eos_masking(self):
    probs = tf.constant([[-.2, -.2, -.2, -.2, -.2], [-.3, -.3, -.3, 3, 0],
                         [5, 6, 0, 0, 0]])
    eos_token = 0
    previously_finished = tf.constant([0, 1, 0], dtype=tf.float32)
    masked = beam_search.mask_probs(probs, eos_token, previously_finished)

    with self.test_session() as sess:
      probs = sess.run(probs)
      masked = sess.run(masked)

      np.testing.assert_array_equal(probs[0], masked[0])
      np.testing.assert_array_equal(probs[2], masked[2])
      np.testing.assert_equal(masked[1][0], 0)
      np.testing.assert_approx_equal(masked[1][1], np.finfo('float32').min)
      np.testing.assert_approx_equal(masked[1][2], np.finfo('float32').min)
      np.testing.assert_approx_equal(masked[1][3], np.finfo('float32').min)
      np.testing.assert_approx_equal(masked[1][4], np.finfo('float32').min)
pointnet_cls.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_loss(pred, label, end_points, reg_weight=0.001):
    """ pred: B*NUM_CLASSES,
        label: B, """
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label)
    classify_loss = tf.reduce_mean(loss)
    tf.summary.scalar('classify loss', classify_loss)

    # Enforce the transformation as orthogonal matrix
    transform = end_points['transform'] # BxKxK
    K = transform.get_shape()[1].value
    mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1]))
    mat_diff -= tf.constant(np.eye(K), dtype=tf.float32)
    mat_diff_loss = tf.nn.l2_loss(mat_diff) 
    tf.summary.scalar('mat loss', mat_diff_loss)

    return classify_loss + mat_diff_loss * reg_weight
pointnet_seg.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_loss(pred, label, end_points, reg_weight=0.001):
    """ pred: BxNxC,
        label: BxN, """
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label)
    classify_loss = tf.reduce_mean(loss)
    tf.scalar_summary('classify loss', classify_loss)

    # Enforce the transformation as orthogonal matrix
    transform = end_points['transform'] # BxKxK
    K = transform.get_shape()[1].value
    mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1]))
    mat_diff -= tf.constant(np.eye(K), dtype=tf.float32)
    mat_diff_loss = tf.nn.l2_loss(mat_diff) 
    tf.scalar_summary('mat_loss', mat_diff_loss)

    return classify_loss + mat_diff_loss * reg_weight
pointnet_part_seg.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def get_loss(l_pred, seg_pred, label, seg, weight, end_points):
    per_instance_label_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=l_pred, labels=label)
    label_loss = tf.reduce_mean(per_instance_label_loss)

    # size of seg_pred is batch_size x point_num x part_cat_num
    # size of seg is batch_size x point_num
    per_instance_seg_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_pred, labels=seg), axis=1)
    seg_loss = tf.reduce_mean(per_instance_seg_loss)

    per_instance_seg_pred_res = tf.argmax(seg_pred, 2)

    # Enforce the transformation as orthogonal matrix
    transform = end_points['transform'] # BxKxK
    K = transform.get_shape()[1].value
    mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1])) - tf.constant(np.eye(K), dtype=tf.float32)
    mat_diff_loss = tf.nn.l2_loss(mat_diff) 


    total_loss = weight * seg_loss + (1 - weight) * label_loss + mat_diff_loss * 1e-3

    return total_loss, label_loss, per_instance_label_loss, seg_loss, per_instance_seg_loss, per_instance_seg_pred_res
mnist.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def mnist_batcher_in_tanh_vector(
    batch_size,
    capacity=256,
    min_after_dequeue=128,
    ):
    (x, y), (_, _) = keras.datasets.mnist.load_data()
    x = tf.constant(x)
    x = tf.cast(x, tf.float32)
    x = keras.layers.Flatten()(x) / 127.5 - 1.
    y = tf.cast(y, tf.int64)

    return tf.train.shuffle_batch(
        [x, y],
        batch_size=batch_size,
        capacity=capacity,
        min_after_dequeue=min_after_dequeue,
        enqueue_many=True
    )
gan.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def _validate(self, machine, n=10):
        N = n * n
        z = np.random.normal(0., 1., size=[n, self.arch['z_dim']])
        z = np.concatenate([z] * n, axis=1)
        z = np.reshape(z, [N, -1]).astype(np.float32)  # consecutive rows
        y = np.asarray(
            [[5,   0,  0 ],
             [9,   0,  0 ],
             [12,  0,  0 ],
             [17,  0,  0 ],
             [19,  0,  0 ],
             [161, 0,  0 ],
             [170, 0,  0 ],
             [170, 16, 0 ],
             [161, 9,  4 ],
             [19,  24, 50]],
            dtype=np.int64)
        y = np.concatenate([y] * n, axis=0)
        Z = tf.constant(z)
        Y = tf.constant(y)
        Xh = machine.generate(Z, Y) # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
network_vgg16.py 文件源码 项目:HandDetection 作者: YunqiuXu 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def batch_norm_layer(self, to_be_normalized, is_training):
    if is_training:
      train_phase = tf.constant(1)
    else:
      train_phase = tf.constant(-1)
    beta = tf.Variable(tf.constant(0.0, shape=[to_be_normalized.shape[-1]]), name='beta', trainable=True)
    gamma = tf.Variable(tf.constant(1.0, shape=[to_be_normalized.shape[-1]]), name='gamma', trainable=True)
    # axises = np.arange(len(to_be_normalized.shape) - 1) # change to apply tensorflow 1.3
    axises = [0,1,2]

    print("start nn.moments")
    print("axises : " + str(axises))
    batch_mean, batch_var = tf.nn.moments(to_be_normalized, axises, name='moments')
    print("nn.moments successful")
    ema = tf.train.ExponentialMovingAverage(decay=0.5)

    def mean_var_with_update():
        ema_apply_op = ema.apply([batch_mean, batch_var])
        with tf.control_dependencies([ema_apply_op]):
            return tf.identity(batch_mean), tf.identity(batch_var)

    mean, var = tf.cond(train_phase > 0, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) # if is training --> update
    normed = tf.nn.batch_normalization(to_be_normalized, mean, var, beta, gamma, 1e-3)
    return normed
repeat.py 文件源码 项目:cxflow-tensorflow 作者: Cognexa 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def repeat(tensor: tf.Tensor, repeats: int, axis: int) -> tf.Tensor:
    """
    Repeat elements of the input tensor in the specified axis ``repeats``-times.

    .. note::
        Chaining of this op may produce TF warnings although the performance seems to be unaffected.

    :param tensor: TF tensor to be repeated
    :param repeats: number of repeats
    :param axis: axis to repeat
    :return: tensor with repeated elements
    """
    shape = tensor.get_shape().as_list()

    dims = np.arange(len(tensor.shape))
    prepare_perm = np.hstack(([axis], np.delete(dims, axis)))
    restore_perm = np.hstack((dims[1:axis+1], [0], dims[axis+1:]))

    indices = tf.cast(tf.floor(tf.range(0, shape[axis]*repeats)/tf.constant(repeats)), 'int32')

    shuffled = tf.transpose(tensor, prepare_perm)
    repeated = tf.gather(shuffled, indices)
    return tf.transpose(repeated, restore_perm)
sparse_test.py 文件源码 项目:cxflow-tensorflow 作者: Cognexa 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_dense_to_sparse(self):
        """ Test if `dense_to_sparse` works properly."""

        with tf.Session().as_default():
            dense = tf.constant([[1., 2., 0.], [0., 0., 3.]], dtype=tf.float32)

            sparse = dense_to_sparse(dense)

            self.assertTrue(np.array_equal(sparse.indices.eval(), np.array([[0, 0], [0, 1], [1, 2]])))
            self.assertTrue(np.array_equal(sparse.values.eval(), np.array([1., 2., 3.])))

            mask = tf.constant([[0, 1, 0], [1, 0, 0]], dtype=tf.int32)

            masked = dense_to_sparse(dense, mask)
            self.assertTrue(np.array_equal(masked.indices.eval(), np.array([[0, 1], [1, 0]])))
            self.assertTrue(np.array_equal(masked.values.eval(), np.array([2., 0.])))
repeat_test.py 文件源码 项目:cxflow-tensorflow 作者: Cognexa 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_repeat(self):
        """ Test if `repeat` works the same as np.repeat."""

        with tf.Session().as_default():
            # try different tensor types
            for npdtype, tfdtype in [(np.int32, tf.int32), (np.float32, tf.float32)]:
                for init_value in [np.array([0, 1, 2, 3], dtype=npdtype),
                                   np.array([[0, 1], [2, 3], [4, 5]], dtype=npdtype)]:
                    # and all their axes
                    for axis in range(len(init_value.shape)):
                        for repeats in [1, 2, 3, 11]:
                            tensor = tf.constant(init_value, dtype=tfdtype)

                            repeated_value = repeat(tensor, repeats=repeats, axis=axis).eval()
                            expected_value = np.repeat(init_value, repeats=repeats, axis=axis)

                            self.assertTrue(np.all(repeated_value == expected_value))
utilities.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init__(self, tag, x, summary_fn=tf.summary.scalar, summary_args=(), scope=None):
    """
    Initializes an Average.

    Arguments
      x: Tensor to be averaged over multiple runs.
      tag: Tag for the summary.
      summary_fn: Function used for creating a summary.
      summary_args: Arguments passed to the summary function.
    """

    with tf.variable_scope(scope or type(self).__name__):
      counter = tf.Variable(name="counter", initial_value=tf.constant(0),
                            dtype=tf.int32, trainable=False)
      running_sum = tf.Variable(name="running_sum", initial_value=tf.constant(0.),
                                dtype=tf.float32, trainable=False)

      self._running_average = running_sum / tf.cast(counter, tf.float32)
      self._summary = summary_fn(tag or x.name + '_avg', self._running_average, **summary_args)
      self._update_op = tf.group(counter.assign_add(1), running_sum.assign_add(x))
      self._reset_op = tf.group(counter.assign(0), running_sum.assign(0.))
hmc.py 文件源码 项目:a-nice-mc 作者: ermongroup 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def simulate_dynamics(initial_pos, initial_vel, stepsize, n_steps, energy_fn):
    def leapfrog(pos, vel, step, i):
        de_dp_ = tf.gradients(tf.reduce_sum(energy_fn(pos)), pos)[0]
        new_vel_ = vel - step * de_dp_
        new_pos_ = pos + step * new_vel_
        return [new_pos_, new_vel_, step, tf.add(i, 1)]

    def condition(pos, vel, step, i):
        return tf.less(i, n_steps)

    de_dp = tf.gradients(tf.reduce_sum(energy_fn(initial_pos)), initial_pos)[0]
    vel_half_step = initial_vel - 0.5 * stepsize * de_dp
    pos_full_step = initial_pos + stepsize * vel_half_step

    i = tf.constant(0)
    final_pos, new_vel, _, _ = tf.while_loop(condition, leapfrog, [pos_full_step, vel_half_step, stepsize, i])
    de_dp = tf.gradients(tf.reduce_sum(energy_fn(final_pos)), final_pos)[0]
    final_vel = new_vel - 0.5 * stepsize * de_dp
    return final_pos, final_vel
a3_entity_network.py 文件源码 项目:text_classification 作者: brightmart 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def smoothing_cross_entropy(self,logits, labels, vocab_size, confidence=0.9): #confidence = 1.0 - label_smoothing. where label_smooth=0.1. from http://github.com/tensorflow/tensor2tensor
        """Cross entropy with label smoothing to limit over-confidence."""
        with tf.name_scope("smoothing_cross_entropy", [logits, labels]):
            # Low confidence is given to all non-true labels, uniformly.
            low_confidence = (1.0 - confidence) / tf.to_float(vocab_size - 1)
            # Normalizing constant is the best cross-entropy value with soft targets.
            # We subtract it just for readability, makes no difference on learning.
            normalizing = -(confidence * tf.log(confidence) + tf.to_float(vocab_size - 1) * low_confidence * tf.log(low_confidence + 1e-20))
            # Soft targets.
            soft_targets = tf.one_hot(
                tf.cast(labels, tf.int32),
                depth=vocab_size,
                on_value=confidence,
                off_value=low_confidence)
            xentropy = tf.nn.softmax_cross_entropy_with_logits(
                logits=logits, labels=soft_targets)
        return xentropy - normalizing
a8_dynamic_memory_network.py 文件源码 项目:text_classification 作者: brightmart 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def smoothing_cross_entropy(self,logits, labels, vocab_size, confidence=0.9): #confidence = 1.0 - label_smoothing. where label_smooth=0.1. from http://github.com/tensorflow/tensor2tensor
        """Cross entropy with label smoothing to limit over-confidence."""
        with tf.name_scope("smoothing_cross_entropy", [logits, labels]):
            # Low confidence is given to all non-true labels, uniformly.
            low_confidence = (1.0 - confidence) / tf.to_float(vocab_size - 1)
            # Normalizing constant is the best cross-entropy value with soft targets.
            # We subtract it just for readability, makes no difference on learning.
            normalizing = -(confidence * tf.log(confidence) + tf.to_float(vocab_size - 1) * low_confidence * tf.log(low_confidence + 1e-20))
            # Soft targets.
            soft_targets = tf.one_hot(
                tf.cast(labels, tf.int32),
                depth=vocab_size,
                on_value=confidence,
                off_value=low_confidence)
            xentropy = tf.nn.softmax_cross_entropy_with_logits(
                logits=logits, labels=soft_targets)
        return xentropy - normalizing
optimizer.py 文件源码 项目:tfutils 作者: neuroailab 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def apply_gradients(self, grads_and_vars, global_step=None):
        """Apply gradients to model variables specified in `grads_and_vars`.

        `apply_gradients` returns an op that calls
        `tf.train.Optimizer.apply_gradients` and then zeros the gradient
        variables stored in `self.grads_and_vars`.

        Args:
            grads_and_vars (list): Description.
            global_step (None, optional): tensorflow global_step variable.

        Returns:
            (tf.Operation): Applies gradient update to model followed by an
                internal gradient zeroing operation to `self.grads_and_vars`.

        """
        self.mini_flag = tf.assign(self.mini_flag, tf.constant([0], dtype = tf.float32))
        # grads_and_vars = self.aggregate_gradients(grads_and_vars, method='average')
        with tf.control_dependencies([self.mini_flag]):
            optimize = self._optimizer.apply_gradients(grads_and_vars,
                                                       global_step=global_step)
        #return [optimize, self.zero_grad()]
        return optimize
batch_norm.py 文件源码 项目:tfplus 作者: renmengye 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def init_var(self):
        trainable = self.trainable
        with tf.variable_scope(self.scope):
            if self.init_beta is None:
                self.init_beta = tf.constant(0.0, shape=[self.n_out])
            if self.init_gamma is None:
                self.init_gamma = tf.constant(1.0, shape=[self.n_out])
            self.beta = self.declare_var(
                [self.n_out], init_val=self.init_beta, name='beta',
                trainable=trainable)
            self.gamma = self.declare_var(
                [self.n_out], init_val=self.init_gamma, name='gamma',
                trainable=trainable)
            self.ema = tf.train.ExponentialMovingAverage(decay=self.decay)
            self.batch_mean = None
            self.batch_var = None
            self.ema_apply_op = None
            pass
        pass
test_ctc_decoders.py 文件源码 项目:speechless 作者: JuliusKunze 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test(self):
        def decode_greedily(beam_search: bool, merge_repeated: bool):
            aa_ctc_blank_aa_logits = tf.constant(np.array([[[1.0, 0.0]], [[1.0, 0.0]], [[0.0, 1.0]],
                                                           [[1.0, 0.0]], [[1.0, 0.0]]], dtype=np.float32))
            sequence_length = tf.constant(np.array([5], dtype=np.int32))

            (decoded_list,), log_probabilities = \
                tf.nn.ctc_beam_search_decoder(inputs=aa_ctc_blank_aa_logits,
                                              sequence_length=sequence_length,
                                              merge_repeated=merge_repeated,
                                              beam_width=1) \
                    if beam_search else \
                    tf.nn.ctc_greedy_decoder(inputs=aa_ctc_blank_aa_logits,
                                             sequence_length=sequence_length,
                                             merge_repeated=merge_repeated)

            return list(tf.Session().run(tf.sparse_tensor_to_dense(decoded_list)[0]))

        self.assertEqual([0], decode_greedily(beam_search=True, merge_repeated=True))
        self.assertEqual([0, 0], decode_greedily(beam_search=True, merge_repeated=False))
        self.assertEqual([0, 0], decode_greedily(beam_search=False, merge_repeated=True))
        self.assertEqual([0, 0, 0, 0], decode_greedily(beam_search=False, merge_repeated=False))
model_group.py 文件源码 项目:answer-triggering 作者: jiez-osu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def bag_hinge_loss(config, preds, sent_mask, flip_sent_mask, hete_mask,
                   sent_trgt, sent_num):
  """ HINGE LOSS:
      DEFINED AS: MAX(0, M - MIN(SENT+) - MAX(SENT-))
      THIS ONLY APPLIES TO HETE BAGS.
  """
  flip_sent_trgt = \
      tf.constant(1, shape=[config.batch_size,sent_num], dtype=config.data_type) - \
      sent_trgt
  pos_preds = preds + flip_sent_trgt + flip_sent_mask # [batch_size, sent_num]
  neg_preds = preds * flip_sent_trgt * sent_mask # [batch_size, sent_num]
  min_pos_pred = tf.reduce_min(pos_preds, 1)
  # min_pos_pred = tf.Print(min_pos_pred, [min_pos_pred], message='min_pos_pred')
  max_neg_pred = tf.reduce_max(neg_preds, 1)
  # max_neg_pred = tf.Print(max_neg_pred, [max_neg_pred], message='max_neg_pred')

  hinge_loss = hete_mask * tf.reduce_max(tf.pack(
      [tf.constant(0, shape=[config.batch_size], dtype=config.data_type),
       (0.20 - min_pos_pred + max_neg_pred)], axis=1), 1) # [batch_size]
  # hinge_loss = tf.Print(hinge_loss, [hinge_loss], message='hinge_loss', summarize=20)

  avg_hinge_loss = tf.reduce_sum(hinge_loss) / (tf.reduce_sum(hete_mask) + 1e-12)
  return avg_hinge_loss
model.py 文件源码 项目:deeplab_v1_tf1.0 作者: automan000 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def loss(self, img_batch, label_batch):
        """Create the network, run inference on the input batch and compute loss.

        Args:
          input_batch: batch of pre-processed images.

        Returns:
          Pixel-wise softmax loss.
        """
        raw_output = self._create_network(tf.cast(img_batch, tf.float32), keep_prob=tf.constant(0.5))
        prediction = tf.reshape(raw_output, [-1, n_classes])

        # Need to resize labels and convert using one-hot encoding.
        label_batch = self.prepare_label(label_batch, tf.stack(raw_output.get_shape()[1:3]))
        gt = tf.reshape(label_batch, [-1, n_classes])

        # Pixel-wise softmax loss.
        loss = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=gt)
        reduced_loss = tf.reduce_mean(loss)

        return reduced_loss
aux.py 文件源码 项目:Fast-Slow-LSTM 作者: amujika 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def layer_norm_all(h, base, num_units, scope):
    # Layer Norm (faster version)
    #
    # Performs layer norm on multiple base at once (ie, i, g, j, o for lstm)
    #
    # Reshapes h in to perform layer norm in parallel
    with tf.variable_scope(scope):
        h_reshape = tf.reshape(h, [-1, base, num_units])
        mean = tf.reduce_mean(h_reshape, [2], keep_dims=True)
        var = tf.reduce_mean(tf.square(h_reshape - mean), [2], keep_dims=True)
        epsilon = tf.constant(1e-3)
        rstd = tf.rsqrt(var + epsilon)
        h_reshape = (h_reshape - mean) * rstd
        # reshape back to original
        h = tf.reshape(h_reshape, [-1, base * num_units])

        alpha = tf.get_variable('layer_norm_alpha', [4 * num_units],
                                initializer=tf.constant_initializer(1.0), dtype=tf.float32)
        bias = tf.get_variable('layer_norm_bias', [4 * num_units],
                               initializer=tf.constant_initializer(0.0), dtype=tf.float32)

    return (h * alpha) + bias
TestUpd.py 文件源码 项目:NTM-One-Shot-TF 作者: hmishra2250 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def omniglot():

    sess = tf.InteractiveSession()

    """    def wrapper(v):
        return tf.Print(v, [v], message="Printing v")

    v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix')

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp')
    temp = wrapper(v)
    #with tf.control_dependencies([temp]):
    temp.eval()
    print 'Hello'"""

    def update_tensor(V, dim2, val):  # Update tensor V, with index(:,dim2[:]) by val[:]
        val = tf.cast(val, V.dtype)
        def body(_, (v, d2, chg)):
            d2_int = tf.cast(d2, tf.int32)
            return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]])
        Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update")
        return Z


问题


面经


文章

微信
公众号

扫码关注公众号