def dense(inputs, units, bias_shape, w_i, b_i=None, activation=tf.nn.relu):
# ??tf.layers?????flatten
# dense1 = tf.layers.dense(tf.contrib.layers.flatten(relu5), activation=tf.nn.relu, units=50)
if not isinstance(inputs, ops.Tensor):
inputs = ops.convert_to_tensor(inputs, dtype='float')
# dim_list = inputs.get_shape().as_list()
# flatten_shape = dim_list[1] if len(dim_list) <= 2 else reduce(lambda x, y: x * y, dim_list[1:])
# reshaped = tf.reshape(inputs, [dim_list[0], flatten_shape])
if len(inputs.shape) > 2:
inputs = tf.contrib.layers.flatten(inputs)
flatten_shape = inputs.shape[1]
weights = tf.get_variable('weights', shape=[flatten_shape, units], initializer=w_i)
dense = tf.matmul(inputs, weights)
if bias_shape is not None:
assert bias_shape[0] == units
biases = tf.get_variable('biases', shape=bias_shape, initializer=b_i)
return activation(dense + biases) if activation is not None else dense + biases
return activation(dense) if activation is not None else dense
python类get_variable()的实例源码
def variable_on_worker_level(name, shape, initializer):
r'''
Next we concern ourselves with graph creation.
However, before we do so we must introduce a utility function ``variable_on_worker_level()``
used to create a variable in CPU memory.
'''
# Use the /cpu:0 device on worker_device for scoped operations
if len(FLAGS.ps_hosts) == 0:
device = worker_device
else:
device = tf.train.replica_device_setter(worker_device=worker_device, cluster=cluster)
with tf.device(device):
# Create or get apropos variable
var = tf.get_variable(name=name, shape=shape, initializer=initializer)
return var
def variable_on_worker_level(name, shape, initializer):
r'''
Next we concern ourselves with graph creation.
However, before we do so we must introduce a utility function ``variable_on_worker_level()``
used to create a variable in CPU memory.
'''
# Use the /cpu:0 device on worker_device for scoped operations
if len(FLAGS.ps_hosts) == 0:
device = worker_device
else:
device = tf.train.replica_device_setter(worker_device=worker_device, cluster=cluster)
with tf.device(device):
# Create or get apropos variable
var = tf.get_variable(name=name, shape=shape, initializer=initializer)
return var
def variable_on_worker_level(name, shape, initializer):
r'''
Next we concern ourselves with graph creation.
However, before we do so we must introduce a utility function ``variable_on_worker_level()``
used to create a variable in CPU memory.
'''
# Use the /cpu:0 device on worker_device for scoped operations
if len(FLAGS.ps_hosts) == 0:
device = worker_device
else:
device = tf.train.replica_device_setter(worker_device=worker_device, cluster=cluster)
with tf.device(device):
# Create or get apropos variable
var = tf.get_variable(name=name, shape=shape, initializer=initializer)
return var
def _variable_on_device(name, shape, initializer, trainable=True):
"""Helper to create a Variable.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
# TODO(bichen): fix the hard-coded data type below
dtype = tf.float32
if not callable(initializer):
var = tf.get_variable(name, initializer=initializer, trainable=trainable)
else:
var = tf.get_variable(
name, shape, initializer=initializer, dtype=dtype, trainable=trainable)
return var
def create_model(self, model_input, vocab_size, num_frames, l2_penalty=1e-8, **unused_params):
"""
A super model that combine one or more models
"""
models = FLAGS.wide_and_deep_models
outputs = []
for model_name in map(lambda x: x.strip(), models.split(",")):
model = getattr(frame_level_models, model_name, None)()
output = model.create_model(model_input, vocab_size, num_frames, l2_penalty=l2_penalty, **unused_params)["predictions"]
outputs.append(tf.expand_dims(output, axis=2))
num_models = len(outputs)
model_outputs = tf.concat(outputs, axis=2)
# linear_combination = tf.get_variable("combine", shape=[vocab_size,num_models],
# dtype=tf.float32, initializer=tf.zeros_initializer(),
# regularizer=slim.l2_regularizer(l2_penalty))
# combination = tf.nn.softmax(linear_combination)
combination = tf.fill(dims=[vocab_size,num_models], value=1.0/num_models)
output_sum = tf.einsum("ijk,jk->ij", model_outputs, combination)
return {"predictions": output_sum}
def get_video_weights(video_id_batch):
video_id_to_index = tf.contrib.lookup.string_to_index_table_from_file(
vocabulary_file=FLAGS.sample_vocab_file, default_value=0)
indexes = video_id_to_index.lookup(video_id_batch)
weights, length = get_video_weights_array()
weights_input = tf.placeholder(tf.float32, shape=[length], name="sample_weights_input")
weights_tensor = tf.get_variable("sample_weights",
shape=[length],
trainable=False,
dtype=tf.float32,
initializer=tf.constant_initializer(weights))
weights_assignment = tf.assign(weights_tensor, weights_input)
tf.add_to_collection("weights_input", weights_input)
tf.add_to_collection("weights_assignment", weights_assignment)
video_weight_batch = tf.nn.embedding_lookup(weights_tensor, indexes)
return video_weight_batch
def get_video_weights(video_id_batch):
video_id_to_index = tf.contrib.lookup.string_to_index_table_from_file(
vocabulary_file=FLAGS.sample_vocab_file, default_value=0)
indexes = video_id_to_index.lookup(video_id_batch)
weights, length = get_video_weights_array()
weights_input = tf.placeholder(tf.float32, shape=[length], name="sample_weights_input")
weights_tensor = tf.get_variable("sample_weights",
shape=[length],
trainable=False,
dtype=tf.float32,
initializer=tf.constant_initializer(weights))
weights_assignment = tf.assign(weights_tensor, weights_input)
tf.add_to_collection("weights_input", weights_input)
tf.add_to_collection("weights_assignment", weights_assignment)
video_weight_batch = tf.nn.embedding_lookup(weights_tensor, indexes)
return video_weight_batch
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, **unused_params):
"""Creates a matrix regression model.
Args:
model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
num_features = model_input.get_shape().as_list()[-2]
num_methods = model_input.get_shape().as_list()[-1]
weight1d = tf.get_variable("ensemble_weight1d",
shape=[num_methods],
regularizer=slim.l2_regularizer(l2_penalty))
weight2d = tf.get_variable("ensemble_weight2d",
shape=[num_features, num_methods],
regularizer=slim.l2_regularizer(10 * l2_penalty))
weight = tf.nn.softmax(tf.einsum("ij,j->ij", weight2d, weight1d), dim=-1)
output = tf.einsum("ijk,jk->ij", model_input, weight)
return {"predictions": output}
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, **unused_params):
"""Creates a linear regression model.
Args:
model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
num_methods = model_input.get_shape().as_list()[-1]
weight = tf.get_variable("ensemble_weight",
shape=[num_methods],
regularizer=slim.l2_regularizer(l2_penalty))
weight = tf.nn.softmax(weight)
output = tf.einsum("ijk,k->ij", model_input, weight)
return {"predictions": output}
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, epsilon=1e-5, **unused_params):
"""Creates a non-unified matrix regression model.
Args:
model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
num_features = model_input.get_shape().as_list()[-2]
num_methods = model_input.get_shape().as_list()[-1]
log_model_input = tf.stop_gradient(tf.log((epsilon + model_input) / (1.0 + epsilon - model_input)))
weight = tf.get_variable("ensemble_weight",
shape=[num_features, num_methods],
regularizer=slim.l2_regularizer(l2_penalty))
weight = tf.nn.softmax(weight)
output = tf.nn.sigmoid(tf.einsum("ijk,jk->ij", log_model_input, weight))
return {"predictions": output}
def trainable_initial_state(self, batch_size):
"""
Create a trainable initial state for the BasicLSTMCell
:param batch_size: number of samples per batch
:return: LSTMStateTuple
"""
def _create_initial_state(batch_size, state_size, trainable=True, initializer=tf.random_normal_initializer()):
with tf.device('/cpu:0'):
s = tf.get_variable('initial_state', shape=[1, state_size], dtype=tf.float32, trainable=trainable,
initializer=initializer)
state = tf.tile(s, tf.stack([batch_size] + [1]))
return state
with tf.variable_scope('initial_c'):
initial_c = _create_initial_state(batch_size, self._num_units)
with tf.variable_scope('initial_h'):
initial_h = _create_initial_state(batch_size, self._num_units)
return tf.contrib.rnn.LSTMStateTuple(initial_c, initial_h)
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None):
with tf.variable_scope(name):
stride_shape = [1, stride[0], stride[1], 1]
filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = np.prod(filter_shape[:3])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = np.prod(filter_shape[:2]) * num_filters
# initialize weights with random weights
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
collections=collections)
b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0),
collections=collections)
return tf.nn.conv2d(x, w, stride_shape, pad) + b
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None):
with tf.variable_scope(name):
stride_shape = [1, stride[0], stride[1], 1]
filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = np.prod(filter_shape[:3])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = np.prod(filter_shape[:2]) * num_filters
# initialize weights with random weights
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
collections=collections)
b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0),
collections=collections)
return tf.nn.conv2d(x, w, stride_shape, pad) + b
def batchnorm(x, name, phase, updates, gamma=0.96):
k = x.get_shape()[1]
runningmean = tf.get_variable(name+"/mean", shape=[1, k], initializer=tf.constant_initializer(0.0), trainable=False)
runningvar = tf.get_variable(name+"/var", shape=[1, k], initializer=tf.constant_initializer(1e-4), trainable=False)
testy = (x - runningmean) / tf.sqrt(runningvar)
mean_ = mean(x, axis=0, keepdims=True)
var_ = mean(tf.square(x), axis=0, keepdims=True)
std = tf.sqrt(var_)
trainy = (x - mean_) / std
updates.extend([
tf.assign(runningmean, runningmean * gamma + mean_ * (1 - gamma)),
tf.assign(runningvar, runningvar * gamma + var_ * (1 - gamma))
])
y = switch(phase, trainy, testy)
out = y * tf.get_variable(name+"/scaling", shape=[1, k], initializer=tf.constant_initializer(1.0), trainable=True)\
+ tf.get_variable(name+"/translation", shape=[1,k], initializer=tf.constant_initializer(0.0), trainable=True)
return out
# ================================================================
# Mathematical utils
# ================================================================
def test_with_dynamic_inputs(self):
embeddings = tf.get_variable("W_embed", [self.vocab_size, self.input_depth])
helper = decode_helper.GreedyEmbeddingHelper(
embedding=embeddings, start_tokens=[0] * self.batch_size, end_token=-1)
decoder_fn = self.create_decoder(
helper=helper, mode=tf.contrib.learn.ModeKeys.INFER)
initial_state = decoder_fn.cell.zero_state(
self.batch_size, dtype=tf.float32)
decoder_output, _ = decoder_fn(initial_state, helper)
#pylint: disable=E1101
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
decoder_output_ = sess.run(decoder_output)
np.testing.assert_array_equal(
decoder_output_.logits.shape,
[self.max_decode_length, self.batch_size, self.vocab_size])
np.testing.assert_array_equal(decoder_output_.predicted_ids.shape,
[self.max_decode_length, self.batch_size])
def makeDNN(hidden_layer):
# input from X
prevLayer = X
# make layers
for i in range(hidden_layer):
if i==0:
newWeight = tf.get_variable("W0%d" % i, shape=[features, wide], initializer=tf.contrib.layers.xavier_initializer())
else:
newWeight = tf.get_variable("W0%d" % i, shape=[wide, wide], initializer=tf.contrib.layers.xavier_initializer())
newBias = tf.Variable(tf.random_normal([wide]))
newLayer = tf.nn.relu(tf.matmul(prevLayer, newWeight) + newBias)
newDropLayer = tf.nn.dropout(newLayer, dropout_rate)
prevLayer = newDropLayer
# make output layers
Wo = tf.get_variable("Wo", shape=[wide, labels], initializer=tf.contrib.layers.xavier_initializer())
bo = tf.Variable(tf.random_normal([labels]))
return tf.matmul(prevLayer, Wo) + bo
# tf Graph Input
def _conv2d_impl(self, input_layer, num_channels_in, filters, kernel_size,
strides, padding, kernel_initializer):
if self.use_tf_layers:
return conv_layers.conv2d(input_layer, filters, kernel_size, strides,
padding, self.channel_pos,
kernel_initializer=kernel_initializer,
use_bias=False)
else:
weights_shape = [kernel_size[0], kernel_size[1], num_channels_in, filters]
# We use the name 'conv2d/kernel' so the variable has the same name as its
# tf.layers equivalent. This way, if a checkpoint is written when
# self.use_tf_layers == True, it can be loaded when
# self.use_tf_layers == False, and vice versa.
weights = self.get_variable('conv2d/kernel', weights_shape,
self.variable_dtype, self.dtype,
initializer=kernel_initializer)
if self.data_format == 'NHWC':
strides = [1] + strides + [1]
else:
strides = [1, 1] + strides
return tf.nn.conv2d(input_layer, weights, strides, padding,
data_format=self.data_format)
def get_gradients_to_apply(self, device_num, gradient_state):
device_grads = gradient_state # From 2nd result of preprocess_device_grads.
avg_grads, self.grad_has_inf_nan = (
variable_mgr_util.aggregate_gradients_using_copy_with_device_selection(
self.benchmark_cnn,
device_grads,
use_mean=True,
check_inf_nan=self.benchmark_cnn.enable_auto_loss_scale))
# Make shadow variable on a parameter server for each original trainable
# variable.
for i, (g, v) in enumerate(avg_grads):
my_name = variable_mgr_util.PS_SHADOW_VAR_PREFIX + '/' + v.name
if my_name.endswith(':0'):
my_name = my_name[:-2]
new_v = tf.get_variable(
my_name,
dtype=v.dtype.base_dtype,
initializer=v.initial_value,
trainable=True)
avg_grads[i] = (g, new_v)
return avg_grads
def fix_variables(self, sess, pretrained_model):
print('Fix VGG16 layers..')
with tf.variable_scope('Fix_VGG16') as scope:
with tf.device("/cpu:0"):
# fix the vgg16 issue from conv weights to fc weights
# fix RGB to BGR
fc6_conv = tf.get_variable("fc6_conv", [7, 7, 512, 4096], trainable=False)
fc7_conv = tf.get_variable("fc7_conv", [1, 1, 4096, 4096], trainable=False)
conv1_rgb = tf.get_variable("conv1_rgb", [3, 3, 3, 64], trainable=False)
restorer_fc = tf.train.Saver({self._scope + "/fc6/weights": fc6_conv,
self._scope + "/fc7/weights": fc7_conv,
self._scope + "/conv1/conv1_1/weights": conv1_rgb})
restorer_fc.restore(sess, pretrained_model)
sess.run(tf.assign(self._variables_to_fix[self._scope + '/fc6/weights:0'], tf.reshape(fc6_conv,
self._variables_to_fix[self._scope + '/fc6/weights:0'].get_shape())))
sess.run(tf.assign(self._variables_to_fix[self._scope + '/fc7/weights:0'], tf.reshape(fc7_conv,
self._variables_to_fix[self._scope + '/fc7/weights:0'].get_shape())))
sess.run(tf.assign(self._variables_to_fix[self._scope + '/conv1/conv1_1/weights:0'],
tf.reverse(conv1_rgb, [2])))
def _create_model(self, **kwargs) -> None:
"""
Create your TensorFlow model.
Every model has to define:
- loss tensor named according to given ``loss_name``
- input placeholders and output tensors named according to the specified input and output names
.. warning::
To support multi-GPU training, all the variables must be created with ``tf.get_variable``
and appropriate variable scopes.
:param kwargs: model configuration as specified in ``model`` section of the configuration file
"""
raise NotImplementedError('`_create_model` method must be implemented in order to construct a new model.')
def conv3d(input_, output_dim, f_size, is_training, scope='conv3d'):
with tf.variable_scope(scope) as scope:
# VGG network uses two 3*3 conv layers to effectively increase receptive field
w1 = tf.get_variable('w1', [f_size, f_size, f_size, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1 = tf.nn.conv3d(input_, w1, strides=[1, 1, 1, 1, 1], padding='SAME')
b1 = tf.get_variable('b1', [output_dim], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.bias_add(conv1, b1)
bn1 = tf.contrib.layers.batch_norm(conv1, is_training=is_training, scope='bn1',
variables_collections=['bn_collections'])
r1 = tf.nn.relu(bn1)
w2 = tf.get_variable('w2', [f_size, f_size, f_size, output_dim, output_dim],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2 = tf.nn.conv3d(r1, w2, strides=[1, 1, 1, 1, 1], padding='SAME')
b2 = tf.get_variable('b2', [output_dim], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.bias_add(conv2, b2)
bn2 = tf.contrib.layers.batch_norm(conv2, is_training=is_training, scope='bn2',
variables_collections=['bn_collections'])
r2 = tf.nn.relu(bn2)
return r2
def deconv2d(input_, output_shape,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="deconv2d", with_w=False):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
tf_output_shape=tf.stack(output_shape)
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=tf_output_shape,
strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
#deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), tf_output_shape)
if with_w:
return deconv, w, biases
else:
return deconv
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
#mat_shape=tf.stack([tf.shape(input_)[1],output_size])
mat_shape=[shape[1],output_size]
with tf.variable_scope(scope or "Linear"):
#matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
matrix = tf.get_variable("Matrix", mat_shape, tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias
#minibatch method that improves on openai
#because it doesn't fix batchsize:
#TODO: recheck when not sleepy
def _get_weight_variable(self, layer_name, name, shape, L2=1):
wname = '%s/%s:0'%(layer_name,name)
fanin, fanout = shape[-2:]
for dim in shape[:-2]:
fanin *= float(dim)
fanout *= float(dim)
sigma = self._xavi_norm(fanin, fanout)
if self.weights is None or wname not in self.weights:
w1 = tf.get_variable(name,initializer=tf.truncated_normal(shape = shape,
mean=0,stddev = sigma))
print('{:>23} {:>23}'.format(wname, 'randomly initialize'))
else:
w1 = tf.get_variable(name, shape = shape,
initializer=tf.constant_initializer(value=self.weights[wname],dtype=tf.float32))
self.loaded_weights[wname]=1
if wname != w1.name:
print(wname,w1.name)
assert False
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(w1)*L2)
return w1
def global_step(device=''):
"""Returns the global step variable.
Args:
device: Optional device to place the variable. It can be an string or a
function that is called to get the device for the variable.
Returns:
the tensor representing the global step variable.
"""
global_step_ref = tf.get_collection(tf.GraphKeys.GLOBAL_STEP)
if global_step_ref:
return global_step_ref[0]
else:
collections = [
VARIABLES_TO_RESTORE,
tf.GraphKeys.VARIABLES,
tf.GraphKeys.GLOBAL_STEP,
]
# Get the device for the variable.
with tf.device(variable_device(device, 'global_step')):
return tf.get_variable('global_step', shape=[], dtype=tf.int64,
initializer=tf.zeros_initializer,
trainable=False, collections=collections)
def __call__(self, x, train=True):
shape = x.get_shape().as_list()
if train:
with tf.variable_scope(self.name) as scope:
self.beta = tf.get_variable("beta", [shape[-1]],
initializer=tf.constant_initializer(0.))
self.gamma = tf.get_variable("gamma", [shape[-1]],
initializer=tf.random_normal_initializer(1., 0.02))
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema_apply_op = self.ema.apply([batch_mean, batch_var])
self.ema_mean, self.ema_var = self.ema.average(batch_mean), self.ema.average(batch_var)
with tf.control_dependencies([ema_apply_op]):
mean, var = tf.identity(batch_mean), tf.identity(batch_var)
else:
mean, var = self.ema_mean, self.ema_var
normed = tf.nn.batch_norm_with_global_normalization(
x, mean, var, self.beta, self.gamma, self.epsilon, scale_after_normalization=True)
return normed
# standard convolution layer
def Minibatch_Discriminator(input, num_kernels=100, dim_per_kernel=5, init=False, name='MD'):
num_inputs=df_dim*4
theta = tf.get_variable(name+"/theta",[num_inputs, num_kernels, dim_per_kernel], initializer=tf.random_normal_initializer(stddev=0.05))
log_weight_scale = tf.get_variable(name+"/lws",[num_kernels, dim_per_kernel], initializer=tf.constant_initializer(0.0))
W = tf.mul(theta, tf.expand_dims(tf.exp(log_weight_scale)/tf.sqrt(tf.reduce_sum(tf.square(theta),0)),0))
W = tf.reshape(W,[-1,num_kernels*dim_per_kernel])
x = input
x=tf.reshape(x, [batchsize,num_inputs])
activation = tf.matmul(x, W)
activation = tf.reshape(activation,[-1,num_kernels,dim_per_kernel])
abs_dif = tf.mul(tf.reduce_sum(tf.abs(tf.sub(tf.expand_dims(activation,3),tf.expand_dims(tf.transpose(activation,[1,2,0]),0))),2),
1-tf.expand_dims(tf.constant(np.eye(batchsize),dtype=np.float32),1))
f = tf.reduce_sum(tf.exp(-abs_dif),2)/tf.reduce_sum(tf.exp(-abs_dif))
print(f.get_shape())
print(input.get_shape())
return tf.concat(1,[x, f])
a8_dynamic_memory_network.py 文件源码
项目:text_classification
作者: brightmart
项目源码
文件源码
阅读 28
收藏 0
点赞 0
评论 0
def instantiate_weights(self):
"""define all weights here"""
with tf.variable_scope("gru_cell"):
self.W_z = tf.get_variable("W_z", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.U_z = tf.get_variable("U_z", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.b_z = tf.get_variable("b_z", shape=[self.hidden_size])
# GRU parameters:reset gate related
self.W_r = tf.get_variable("W_r", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.U_r = tf.get_variable("U_r", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.b_r = tf.get_variable("b_r", shape=[self.hidden_size])
self.W_h = tf.get_variable("W_h", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.U_h = tf.get_variable("U_h", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.b_h = tf.get_variable("b_h", shape=[self.hidden_size])
with tf.variable_scope("embedding_projection"): # embedding matrix
self.Embedding = tf.get_variable("Embedding", shape=[self.vocab_size, self.embed_size],initializer=self.initializer)
# test: learn to count. weight of query and story is different
#two step to test
#step1. run train function to train the model. it will save checkpoint
#step2. run predict function to make a prediction based on the model restore from the checkpoint.
def sub_layer_multi_head_attention(self ,layer_index ,Q ,K_s,type,mask=None,is_training=None,dropout_keep_prob=None) :# COMMON FUNCTION
"""
multi head attention as sub layer
:param layer_index: index of layer number
:param Q: shape should be: [batch_size,sequence_length,embed_size]
:param k_s: shape should be: [batch_size,sequence_length,embed_size]
:param type: encoder,decoder or encoder_decoder_attention
:param mask: when use mask,illegal connection will be mask as huge big negative value.so it's possiblitity will become zero.
:return: output of multi head attention.shape:[batch_size,sequence_length,d_model]
"""
with tf.variable_scope("base_mode_sub_layer_multi_head_attention_" + type+str(layer_index)):
# below is to handle attention for encoder and decoder with difference length:
#length=self.decoder_sent_length if (type!='encoder' and self.sequence_length!=self.decoder_sent_length) else self.sequence_length #TODO this may be useful
length=self.sequence_length
#1. get V as learned parameters
V_s = tf.get_variable("V_s", shape=(self.batch_size,length,self.d_model),initializer=self.initializer)
#2. call function of multi head attention to get result
multi_head_attention_class = MultiHeadAttention(Q, K_s, V_s, self.d_model, self.d_k, self.d_v, self.sequence_length,
self.h,type=type,is_training=is_training,mask=mask,dropout_rate=(1.0-dropout_keep_prob))
sub_layer_multi_head_attention_output = multi_head_attention_class.multi_head_attention_fn() # [batch_size*sequence_length,d_model]
return sub_layer_multi_head_attention_output # [batch_size,sequence_length,d_model]