def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, seq_len,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
with tf.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]],
decoder_inputs[:bucket[1]],
seq_len)
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
python类get_variable_scope()的实例源码
def embedding_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
num_encoder_symbols, num_decoder_symbols,
embedding_size, output_projection=None,
feed_previous=False, dtype=dtypes.float32,
scope=None):
with variable_scope.variable_scope(scope or "embedding_rnn_seq2seq"):
# Encoder.
encoder_cell = rnn_cell.EmbeddingWrapper(
cell, embedding_classes=num_encoder_symbols,
embedding_size=embedding_size)
_, encoder_state = rnn.rnn(encoder_cell, encoder_inputs, dtype=dtype)
# Decoder.
if output_projection is None:
cell = rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
if isinstance(feed_previous, bool):
return embedding_rnn_decoder(
decoder_inputs, encoder_state, cell, num_decoder_symbols,
embedding_size, output_projection=output_projection,
feed_previous=feed_previous)
# If feed_previous is a Tensor, we construct 2 graphs and use cond.
def decoder(feed_previous_bool):
reuse = None if feed_previous_bool else True
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=reuse):
outputs, state = embedding_rnn_decoder(
decoder_inputs, encoder_state, cell, num_decoder_symbols,
embedding_size, output_projection=output_projection,
feed_previous=feed_previous_bool,
update_embedding_for_previous=False)
return outputs + [state]
outputs_and_state = control_flow_ops.cond(feed_previous,
lambda: decoder(True),
lambda: decoder(False))
return outputs_and_state[:-1], outputs_and_state[-1]
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, seq_len,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
with tf.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]],
decoder_inputs[:bucket[1]],
seq_len)
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
def embedding_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
num_encoder_symbols, num_decoder_symbols,
embedding_size, output_projection=None,
feed_previous=False, dtype=dtypes.float32,
scope=None):
with variable_scope.variable_scope(scope or "embedding_rnn_seq2seq"):
# Encoder.
encoder_cell = rnn_cell.EmbeddingWrapper(
cell, embedding_classes=num_encoder_symbols,
embedding_size=embedding_size)
_, encoder_state = rnn.rnn(encoder_cell, encoder_inputs, dtype=dtype)
# Decoder.
if output_projection is None:
cell = rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
if isinstance(feed_previous, bool):
return embedding_rnn_decoder(
decoder_inputs, encoder_state, cell, num_decoder_symbols,
embedding_size, output_projection=output_projection,
feed_previous=feed_previous)
# If feed_previous is a Tensor, we construct 2 graphs and use cond.
def decoder(feed_previous_bool):
reuse = None if feed_previous_bool else True
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=reuse):
outputs, state = embedding_rnn_decoder(
decoder_inputs, encoder_state, cell, num_decoder_symbols,
embedding_size, output_projection=output_projection,
feed_previous=feed_previous_bool,
update_embedding_for_previous=False)
return outputs + [state]
outputs_and_state = control_flow_ops.cond(feed_previous,
lambda: decoder(True),
lambda: decoder(False))
return outputs_and_state[:-1], outputs_and_state[-1]
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, seq_len,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
with tf.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]],
decoder_inputs[:bucket[1]],
seq_len)
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, seq_len,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
with tf.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]],
decoder_inputs[:bucket[1]],
seq_len)
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def embedding_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
num_encoder_symbols, num_decoder_symbols,
embedding_size, output_projection=None,
feed_previous=False, dtype=dtypes.float32,
scope=None):
with variable_scope.variable_scope(scope or "embedding_rnn_seq2seq"):
# Encoder.
encoder_cell = rnn_cell.EmbeddingWrapper(
cell, embedding_classes=num_encoder_symbols,
embedding_size=embedding_size)
_, encoder_state = rnn.rnn(encoder_cell, encoder_inputs, dtype=dtype)
# Decoder.
if output_projection is None:
cell = rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
if isinstance(feed_previous, bool):
return embedding_rnn_decoder(
decoder_inputs, encoder_state, cell, num_decoder_symbols,
embedding_size, output_projection=output_projection,
feed_previous=feed_previous)
# If feed_previous is a Tensor, we construct 2 graphs and use cond.
def decoder(feed_previous_bool):
reuse = None if feed_previous_bool else True
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=reuse):
outputs, state = embedding_rnn_decoder(
decoder_inputs, encoder_state, cell, num_decoder_symbols,
embedding_size, output_projection=output_projection,
feed_previous=feed_previous_bool,
update_embedding_for_previous=False)
return outputs + [state]
outputs_and_state = control_flow_ops.cond(feed_previous,
lambda: decoder(True),
lambda: decoder(False))
return outputs_and_state[:-1], outputs_and_state[-1]
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, seq_len,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
with tf.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]],
decoder_inputs[:bucket[1]],
seq_len)
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, seq_len,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
with tf.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]],
decoder_inputs[:bucket[1]],
seq_len)
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def many2one_model_with_buckets(encoder_inputs_list, decoder_inputs, targets, weights,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None, spscale=20):
# Modified model with buckets to accept 2 encoders
if len(encoder_inputs_list[0]) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs_list + decoder_inputs + targets + weights
losses = []
outputs = []
speech_buckets = [(x*spscale, y) for (x,y) in buckets]
with ops.op_scope(all_inputs, name, "many2one_model_with_buckets"):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
#bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]])
x = encoder_inputs_list[0][:bucket[0]]
#print( x )
y = encoder_inputs_list[1][:speech_buckets[j][0]]
bucket_outputs, _ = seq2seq([x, y], decoder_inputs[:bucket[1]])
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
tensorflow_custom.py 文件源码
项目:DialogueBreakdownDetection2016
作者: icoxfog417
项目源码
文件源码
阅读 17
收藏 0
点赞 0
评论 0
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
with ops.op_scope(all_inputs, name, "model_with_buckets"):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]])
outputs.append(bucket_outputs)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
def tied_rnn_seq2seq(encoder_inputs,
decoder_inputs,
cell,
loop_function=None,
dtype=dtypes.float32,
scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = core_rnn.static_rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(
decoder_inputs,
enc_state,
cell,
loop_function=loop_function,
scope=scope)
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
gst_seq2seq.py 文件源码
项目:Deep-Reinforcement-Learning-for-Dialogue-Generation-in-tensorflow
作者: liuyuemaicha
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
gst_seq2seq.py 文件源码
项目:Deep-Reinforcement-Learning-for-Dialogue-Generation-in-tensorflow
作者: liuyuemaicha
项目源码
文件源码
阅读 17
收藏 0
点赞 0
评论 0
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
encoder_states = []
with ops.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, decoder_states, encoder_state = seq2seq(encoder_inputs[:bucket[0]],
decoder_inputs[:bucket[1]])
outputs.append(bucket_outputs)
#print("bucket outputs: %s" %bucket_outputs)
encoder_states.append(encoder_state)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses, encoder_states
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
def tied_rnn_seq2seq(encoder_inputs,
decoder_inputs,
cell,
loop_function=None,
dtype=dtypes.float32,
scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = core_rnn.static_rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(
decoder_inputs,
enc_state,
cell,
loop_function=loop_function,
scope=scope)