python类mul()的实例源码

loss_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def log_loss(
    predictions, labels=None, weights=_WEIGHT_SENTINEL, epsilon=1e-7,
    scope=None, targets=None, weight=_WEIGHT_SENTINEL):
  """Adds a Log Loss term to the training procedure.

  `weight` acts as a coefficient for the loss. If a scalar is provided, then the
  loss is simply scaled by the given value. If `weight` is a tensor of size
  [batch_size], then the total loss for each sample of the batch is rescaled
  by the corresponding element in the `weight` vector. If the shape of
  `weight` matches the shape of `predictions`, then the loss of each
  measurable element of `predictions` is scaled by the corresponding value of
  `weight`.

  Args:
    predictions: The predicted outputs.
    labels: The ground truth output tensor, same dimensions as 'predictions'.
    weights: Coefficients for the loss a scalar, a tensor of shape
      [batch_size] or a tensor whose shape matches `predictions`.
    epsilon: A small increment to add to avoid taking a log of zero.
    scope: The scope for the operations performed in computing the loss.
    targets: Deprecated alias for `labels`.
    weight: Deprecated alias for `weights`.

  Returns:
    A scalar `Tensor` representing the loss value.

  Raises:
    ValueError: If the shape of `predictions` doesn't match that of `labels` or
      if the shape of `weight` is invalid.
  """
  labels = _labels(labels, targets)
  weights = _weights(weights, weight)
  with ops.name_scope(scope, "log_loss",
                      [predictions, labels, weights]) as scope:
    predictions.get_shape().assert_is_compatible_with(labels.get_shape())
    predictions = math_ops.to_float(predictions)
    labels = math_ops.to_float(labels)
    losses = -math_ops.mul(
        labels,
        math_ops.log(predictions + epsilon)) - math_ops.mul(
            (1 - labels), math_ops.log(1 - predictions + epsilon))
    return compute_weighted_loss(losses, weights)
sdca_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def unregularized_loss(self, examples):
    """Add operations to compute the loss (without the regularization loss).

    Args:
      examples: Examples to compute unregularized loss on.

    Returns:
      An Operation that computes mean (unregularized) loss for given set of
      examples.

    Raises:
      ValueError: if examples are not well defined.
    """
    self._assertSpecified(['example_labels', 'example_weights',
                           'sparse_features', 'dense_features'], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)
    with name_scope('sdca/unregularized_loss'):
      predictions = math_ops.cast(
          self._linear_predictions(examples), dtypes.float64)
      labels = math_ops.cast(
          convert_to_tensor(examples['example_labels']), dtypes.float64)
      weights = math_ops.cast(
          convert_to_tensor(examples['example_weights']), dtypes.float64)

      if self._options['loss_type'] == 'logistic_loss':
        return math_ops.reduce_sum(math_ops.mul(
            sigmoid_cross_entropy_with_logits(predictions, labels),
            weights)) / math_ops.reduce_sum(weights)

      if self._options['loss_type'] in ['hinge_loss', 'smooth_hinge_loss']:
        # hinge_loss = max{0, 1 - y_i w*x} where y_i \in {-1, 1}. So, we need to
        # first convert 0/1 labels into -1/1 labels.
        all_ones = array_ops.ones_like(predictions)
        adjusted_labels = math_ops.sub(2 * labels, all_ones)
        # Tensor that contains (unweighted) error (hinge loss) per
        # example.
        error = nn_ops.relu(math_ops.sub(all_ones, math_ops.mul(adjusted_labels,
                                                                predictions)))
        weighted_error = math_ops.mul(error, weights)
        return math_ops.reduce_sum(weighted_error) / math_ops.reduce_sum(
            weights)

      # squared loss
      err = math_ops.sub(labels, predictions)

      weighted_squared_err = math_ops.mul(math_ops.square(err), weights)
      # SDCA squared loss function is sum(err^2) / (2*sum(weights))
      return (math_ops.reduce_sum(weighted_squared_err) /
              (2.0 * math_ops.reduce_sum(weights)))
sparse_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def dense_to_sparse_tensor(dense_tensor, ignore_value=None):
  """Converts a dense Tensor to a SparseTensor, dropping ignore_value cells.

  Args:
    dense_tensor: A `Tensor`.
    ignore_value: Entries in `dense_tensor` equal to this value will be
      absent from the return `SparseTensor`. If `None`, default value of
      dense_tensor's dtype will be used (e.g. '' for `str`, 0 for `int`).

  Returns:
    A `SparseTensor` with the same shape as `dense_tensor`.

  Raises:
    ValueError: when `dense_tensor`'s rank is `None`.
  """
  with ops.name_scope("DenseToSparseTensor"):
    dense_t = ops.convert_to_tensor(dense_tensor)
    if dense_t.get_shape().ndims is None:
      # TODO(b/32318825): Implement dense_to_sparse_tensor for undefined rank.
      raise ValueError("dense_tensor.get_shape() should be defined, got None.")
    if ignore_value is None:
      if dense_t.dtype == dtypes.string:
        # Exception due to TF strings are converted to numpy objects by default.
        ignore_value = ""
      else:
        ignore_value = dense_t.dtype.as_numpy_dtype()
    dense_shape = math_ops.cast(array_ops.shape(dense_t), dtypes.int64)
    indices = array_ops.where(
        math_ops.not_equal(dense_t, math_ops.cast(ignore_value, dense_t.dtype)))
    index_dims = len(dense_t.get_shape())
    # Flattens the tensor and indices for use with gather.
    flat_tensor = array_ops.reshape(dense_t, [-1])
    flat_indices = indices[:, index_dims - 1]
    # Computes the correct flattened indices for 2d (or higher) tensors.
    if index_dims > 1:
      higher_dims = indices[:, :index_dims - 1]
      shape_multipliers = array_ops.pack(
          _multiplier_helper(array_ops.unpack(dense_shape)[1:]))
      offsets = math_ops.reduce_sum(
          math_ops.mul(higher_dims, shape_multipliers), reduction_indices=[1])
      flat_indices = math_ops.add(flat_indices, offsets)
    values = array_ops.gather(flat_tensor, flat_indices)
    return sparse_tensor.SparseTensor(indices, values, dense_shape)


问题


面经


文章

微信
公众号

扫码关注公众号