python类greater()的实例源码

tensor_forest.py 文件源码 项目:deep-learning 作者: lbkchen 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def average_impurity(self):
    """Constructs a TF graph for evaluating the average leaf impurity of a tree.

    If in regression mode, this is the leaf variance. If in classification mode,
    this is the gini impurity.

    Returns:
      The last op in the graph.
    """
    children = array_ops.squeeze(array_ops.slice(
        self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1])
    is_leaf = math_ops.equal(constants.LEAF_NODE, children)
    leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf),
                                                 squeeze_dims=[1]))
    counts = array_ops.gather(self.variables.node_sums, leaves)
    gini = self._weighted_gini(counts)
    # Guard against step 1, when there often are no leaves yet.
    def impurity():
      return gini
    # Since average impurity can be used for loss, when there's no data just
    # return a big number so that loss always decreases.
    def big():
      return array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.
    return control_flow_ops.cond(math_ops.greater(
        array_ops.shape(leaves)[0], 0), impurity, big)
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
          logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode))
          self.mode = 'auto'
        if (self.mode == 'min' or
            (self.mode == 'auto' and 'acc' not in self.monitor)):
          self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
          self.best = np.Inf
        else:
          self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
          self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
loss_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name="value"):
  """Computes a safe divide which returns 0 if the denominator is zero.

  Note that the function contains an additional conditional check that is
  necessary for avoiding situations where the loss is zero causing NaNs to
  creep into the gradient computation.

  Args:
    numerator: An arbitrary `Tensor`.
    denominator: A `Tensor` whose shape matches `numerator` and whose values are
      assumed to be non-negative.
    name: An optional name for the returned op.

  Returns:
    The element-wise value of the numerator divided by the denominator.
  """
  return math_ops.select(
      math_ops.greater(denominator, 0),
      math_ops.div(numerator, math_ops.select(
          math_ops.equal(denominator, 0),
          array_ops.ones_like(denominator), denominator)),
      array_ops.zeros_like(numerator),
      name=name)
metric_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name):
  """Divides two values, returning 0 if the denominator is <= 0.

  Args:
    numerator: A real `Tensor`.
    denominator: A real `Tensor`, with dtype matching `numerator`.
    name: Name for the returned op.

  Returns:
    0 if `denominator` <= 0, else `numerator` / `denominator`
  """
  return math_ops.select(
      math_ops.greater(denominator, 0),
      math_ops.truediv(numerator, denominator),
      0,
      name=name)
student_t.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _variance(self):
    var = (self._ones() *
           math_ops.square(self.sigma) * self.df / (self.df - 2))
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = math_ops.select(
        math_ops.greater(self.df, array_ops.fill(self.batch_shape(), 2.)),
        var,
        array_ops.fill(self.batch_shape(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.greater(self.df, self._ones()),
          result_where_defined,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.df,
              message="variance not defined for components of df <= 1"),
      ], result_where_defined)
beta.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _mode(self):
    mode = (self.a - 1.)/ (self.a_b_sum - 2.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.logical_and(
              math_ops.greater(self.a, 1.),
              math_ops.greater(self.b, 1.)),
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.a,
              message="Mode not defined for components of a <= 1."),
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.b,
              message="Mode not defined for components of b <= 1."),
      ], mode)
dirichlet.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def _mode(self):
    mode = ((self.alpha - 1.) /
            (array_ops.expand_dims(self.alpha_sum, dim=-1) -
             math_ops.cast(self.event_shape()[0], self.dtype)))
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      shape = array_ops.concat(0, (self.batch_shape(), self.event_shape()))
      return math_ops.select(
          math_ops.greater(self.alpha, 1.),
          mode,
          array_ops.fill(shape, nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.alpha,
              message="mode not defined for components of alpha <= 1")
      ], mode)
loss_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name="value"):
  """Computes a safe divide which returns 0 if the denominator is zero.

  Note that the function contains an additional conditional check that is
  necessary for avoiding situations where the loss is zero causing NaNs to
  creep into the gradient computation.

  Args:
    numerator: An arbitrary `Tensor`.
    denominator: A `Tensor` whose shape matches `numerator` and whose values are
      assumed to be non-negative.
    name: An optional name for the returned op.

  Returns:
    The element-wise value of the numerator divided by the denominator.
  """
  return math_ops.select(
      math_ops.greater(denominator, 0),
      math_ops.div(numerator, math_ops.select(
          math_ops.equal(denominator, 0),
          array_ops.ones_like(denominator), denominator)),
      array_ops.zeros_like(numerator),
      name=name)
metric_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name):
  """Divides two values, returning 0 if the denominator is <= 0.

  Args:
    numerator: A real `Tensor`.
    denominator: A real `Tensor`, with dtype matching `numerator`.
    name: Name for the returned op.

  Returns:
    0 if `denominator` <= 0, else `numerator` / `denominator`
  """
  return math_ops.select(
      math_ops.greater(denominator, 0),
      math_ops.truediv(numerator, denominator),
      0,
      name=name)
student_t.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _variance(self):
    var = (self._ones() *
           math_ops.square(self.sigma) * self.df / (self.df - 2))
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = math_ops.select(
        math_ops.greater(self.df, array_ops.fill(self.batch_shape(), 2.)),
        var,
        array_ops.fill(self.batch_shape(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.greater(self.df, self._ones()),
          result_where_defined,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.df,
              message="variance not defined for components of df <= 1"),
      ], result_where_defined)
beta.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _mode(self):
    mode = (self.a - 1.)/ (self.a_b_sum - 2.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.logical_and(
              math_ops.greater(self.a, 1.),
              math_ops.greater(self.b, 1.)),
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.a,
              message="Mode not defined for components of a <= 1."),
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.b,
              message="Mode not defined for components of b <= 1."),
      ], mode)
loss_ops.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name="value"):
  """Computes a safe divide which returns 0 if the denominator is zero.

  Note that the function contains an additional conditional check that is
  necessary for avoiding situations where the loss is zero causing NaNs to
  creep into the gradient computation.

  Args:
    numerator: An arbitrary `Tensor`.
    denominator: A `Tensor` whose shape matches `numerator` and whose values are
      assumed to be non-negative.
    name: An optional name for the returned op.

  Returns:
    The element-wise value of the numerator divided by the denominator.
  """
  return array_ops.where(
      math_ops.greater(denominator, 0),
      math_ops.div(numerator, array_ops.where(
          math_ops.equal(denominator, 0),
          array_ops.ones_like(denominator), denominator)),
      array_ops.zeros_like(numerator),
      name=name)
metric_ops.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name):
  """Divides two values, returning 0 if the denominator is <= 0.

  Args:
    numerator: A real `Tensor`.
    denominator: A real `Tensor`, with dtype matching `numerator`.
    name: Name for the returned op.

  Returns:
    0 if `denominator` <= 0, else `numerator` / `denominator`
  """
  return array_ops.where(
      math_ops.greater(denominator, 0),
      math_ops.truediv(numerator, denominator),
      0,
      name=name)
student_t.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _mean(self):
    mean = self.loc * array_ops.ones(self.batch_shape(), dtype=self.dtype)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.greater(
              self.df,
              array_ops.ones(self.batch_shape(), dtype=self.dtype)),
          mean,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              check_ops.assert_less(
                  array_ops.ones((), dtype=self.dtype),
                  self.df,
                  message="mean not defined for components of df <= 1"),
          ],
          mean)
beta.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _mode(self):
    mode = (self.a - 1.)/ (self.a_b_sum - 2.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.logical_and(
              math_ops.greater(self.a, 1.),
              math_ops.greater(self.b, 1.)),
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.a,
              message="Mode not defined for components of a <= 1."),
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.b,
              message="Mode not defined for components of b <= 1."),
      ], mode)
dirichlet.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _mode(self):
    mode = ((self.alpha - 1.) /
            (array_ops.expand_dims(self.alpha_sum, dim=-1) -
             math_ops.cast(self.event_shape()[0], self.dtype)))
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      shape = array_ops.concat((self.batch_shape(), self.event_shape()), 0)
      return array_ops.where(
          math_ops.greater(self.alpha, 1.),
          mode,
          array_ops.fill(shape, nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.alpha,
              message="mode not defined for components of alpha <= 1")
      ], mode)
math.py 文件源码 项目:antgo 作者: jianzfb 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def safe_divide(numerator, denominator, name):
    """Divides two values, returning 0 if the denominator is <= 0.
    Args:
      numerator: A real `Tensor`.
      denominator: A real `Tensor`, with dtype matching `numerator`.
      name: Name for the returned op.
    Returns:
      0 if `denominator` <= 0, else `numerator` / `denominator`
    """
    return tf.where(
        math_ops.greater(denominator, 0),
        math_ops.divide(numerator, denominator),
        tf.zeros_like(numerator),
        name=name)
metrics.py 文件源码 项目:antgo 作者: jianzfb 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name):
    """Divides two values, returning 0 if the denominator is <= 0.
    Args:
      numerator: A real `Tensor`.
      denominator: A real `Tensor`, with dtype matching `numerator`.
      name: Name for the returned op.
    Returns:
      0 if `denominator` <= 0, else `numerator` / `denominator`
    """
    return tf.where(
        math_ops.greater(denominator, 0),
        math_ops.divide(numerator, denominator),
        tf.zeros_like(numerator),
        name=name)
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def greater(x, y):
      """Element-wise truth value of (x > y).

      Arguments:
          x: Tensor or variable.
          y: Tensor or variable.

      Returns:
          A bool tensor.
      """
      return math_ops.greater(x, y)
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self,
                   filepath,
                   monitor='val_loss',
                   verbose=0,
                   save_best_only=False,
                   save_weights_only=False,
                   mode='auto',
                   period=1):
        super(ModelCheckpoint, self).__init__()
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0

        if mode not in ['auto', 'min', 'max']:
          logging.warning('ModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode))
          mode = 'auto'

        if mode == 'min':
          self.monitor_op = np.less
          self.best = np.Inf
        elif mode == 'max':
          self.monitor_op = np.greater
          self.best = -np.Inf
        else:
          if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
            self.monitor_op = np.greater
            self.best = -np.Inf
          else:
            self.monitor_op = np.less
            self.best = np.Inf
tf-keras-skeleton.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self,
                   monitor='val_loss',
                   min_delta=0,
                   patience=0,
                   verbose=0,
                   mode='auto'):
        super(EarlyStopping, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.min_delta = min_delta
        self.wait = 0
        self.stopped_epoch = 0

        if mode not in ['auto', 'min', 'max']:
          logging.warning('EarlyStopping mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode))
          mode = 'auto'

        if mode == 'min':
          self.monitor_op = np.less
        elif mode == 'max':
          self.monitor_op = np.greater
        else:
          if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
            self.monitor_op = np.greater
          else:
            self.monitor_op = np.less

        if self.monitor_op == np.greater:
          self.min_delta *= 1
        else:
          self.min_delta *= -1
math.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def safe_divide(numerator, denominator, name):
    """Divides two values, returning 0 if the denominator is <= 0.
    Args:
      numerator: A real `Tensor`.
      denominator: A real `Tensor`, with dtype matching `numerator`.
      name: Name for the returned op.
    Returns:
      0 if `denominator` <= 0, else `numerator` / `denominator`
    """
    return tf.where(
        math_ops.greater(denominator, 0),
        math_ops.divide(numerator, denominator),
        tf.zeros_like(numerator),
        name=name)
metrics.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _safe_div(numerator, denominator, name):
    """Divides two values, returning 0 if the denominator is <= 0.
    Args:
      numerator: A real `Tensor`.
      denominator: A real `Tensor`, with dtype matching `numerator`.
      name: Name for the returned op.
    Returns:
      0 if `denominator` <= 0, else `numerator` / `denominator`
    """
    return tf.where(
        math_ops.greater(denominator, 0),
        math_ops.divide(numerator, denominator),
        tf.zeros_like(numerator),
        name=name)
special_math.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _ndtr(x):
  """Implements ndtr core logic."""
  half_sqrt_2 = constant_op.constant(
      0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2")
  w = x * half_sqrt_2
  z = math_ops.abs(w)
  y = math_ops.select(math_ops.less(z, half_sqrt_2),
                      1. + math_ops.erf(w),
                      math_ops.select(math_ops.greater(w, 0.),
                                      2. - math_ops.erfc(z),
                                      math_ops.erfc(z)))
  return 0.5 * y
loss_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def sigmoid_cross_entropy(logits, multi_class_labels, weight=1.0,
                          label_smoothing=0, scope=None):
  """Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.

  `weight` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weight` is a
  tensor of size [`batch_size`], then the loss weights apply to each
  corresponding sample.

  If `label_smoothing` is nonzero, smooth the labels towards 1/2:
      new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
                              + 0.5 * label_smoothing

  Args:
    logits: [batch_size, num_classes] logits outputs of the network .
    multi_class_labels: [batch_size, num_classes] target labels in (0, 1).
    weight: Coefficients for the loss. The tensor must be a scalar, a tensor of
      shape [batch_size] or shape [batch_size, num_classes].
    label_smoothing: If greater than 0 then smooth the labels.
    scope: The scope for the operations performed in computing the loss.

  Returns:
    A scalar `Tensor` representing the loss value.

  Raises:
    ValueError: If the shape of `predictions` doesn't match that of `targets` or
      if the shape of `weight` is invalid or if `weight` is None.
  """
  with ops.name_scope(scope, "sigmoid_cross_entropy_loss",
                      [logits, multi_class_labels]):
    logits.get_shape().assert_is_compatible_with(multi_class_labels.get_shape())

    multi_class_labels = math_ops.cast(multi_class_labels, logits.dtype)

    if label_smoothing > 0:
      multi_class_labels = (multi_class_labels * (1 - label_smoothing) +
                            0.5 * label_smoothing)

    losses = nn.sigmoid_cross_entropy_with_logits(logits, multi_class_labels,
                                                  name="xentropy")
    return compute_weighted_loss(losses, weight)
embedding_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def _prune_invalid_ids(sparse_ids, sparse_weights):
  """Prune invalid IDs (< 0) from the input ids and weights."""
  is_id_valid = math_ops.greater_equal(sparse_ids.values, 0)
  if sparse_weights is not None:
    is_id_valid = math_ops.logical_and(
        is_id_valid, math_ops.greater(sparse_weights.values, 0))
  sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid)
  if sparse_weights is not None:
    sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid)
  return sparse_ids, sparse_weights
student_t.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _mean(self):
    mean = self.mu * self._ones()
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.greater(self.df, self._ones()), mean,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.df,
              message="mean not defined for components of df <= 1"),
      ], mean)
head.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _logits_to_predictions(self, logits):
    """See `_MultiClassHead`."""
    predictions = {prediction_key.PredictionKey.LOGITS: logits}
    if self.logits_dimension == 1:
      predictions[prediction_key.PredictionKey.LOGISTIC] = math_ops.sigmoid(
          logits)
      logits = array_ops.concat(1, [array_ops.zeros_like(logits), logits])
    predictions[prediction_key.PredictionKey.PROBABILITIES] = math_ops.sigmoid(
        logits)
    predictions[prediction_key.PredictionKey.CLASSES] = math_ops.to_int64(
        math_ops.greater(logits, 0))
    return predictions
embedding_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _prune_invalid_ids(sparse_ids, sparse_weights):
  """Prune invalid IDs (< 0) from the input ids and weights."""
  is_id_valid = math_ops.greater_equal(sparse_ids.values, 0)
  if sparse_weights is not None:
    is_id_valid = math_ops.logical_and(
        is_id_valid, math_ops.greater(sparse_weights.values, 0))
  sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid)
  if sparse_weights is not None:
    sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid)
  return sparse_ids, sparse_weights
core.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __gt__(self, other):
    return greater(self, other)


问题


面经


文章

微信
公众号

扫码关注公众号