python类constant_initializer()的实例源码

ln_lstm2.py 文件源码 项目:Multi-channel-speech-extraction-using-DNN 作者: zhr1201 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def ln(tensor, scope=None, epsilon=1e-5):
    """ Layer normalizes a 2D tensor along its second axis """
    assert(len(tensor.get_shape()) == 2)
    m, v = tf.nn.moments(tensor, [1], keep_dims=True)
    if not isinstance(scope, str):
        scope = ''
    with tf.variable_scope(scope + 'layer_norm'):
        scale = tf.get_variable('scale',
                                shape=[tensor.get_shape()[1]],
                                initializer=tf.constant_initializer(1))
        shift = tf.get_variable('shift',
                                shape=[tensor.get_shape()[1]],
                                initializer=tf.constant_initializer(0))
    LN_initial = (tensor - m) / tf.sqrt(v + epsilon)

    return LN_initial * scale + shift
model.py 文件源码 项目:merlin 作者: CSTR-Edinburgh 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state):
    """Gated recurrent unit (GRU) with nunits cells."""
    with vs.variable_scope("gates"):  # Reset gate and update gate.
      # We start with bias of 1.0 to not reset and not update.
      bias_ones = self._bias_initializer
      if self._bias_initializer is None:
        dtype = [a.dtype for a in [inputs, state]][0]
        bias_ones = init_ops.constant_initializer(1.0, dtype=dtype)
      value = rnn_cell_impl._linear([inputs, state], 2 * self._num_units, True, bias_ones,\
                  self._kernel_initializer)
      r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
      r,u=layer_normalization(r,scope="r/"),layer_normalization(u,scope="u/")
      r,u=math_ops.sigmoid(r),math_ops.sigmoid(u)
    with vs.variable_scope("candidate"):
      c = self._activation(rnn_cell_impl._linear([inputs, r * state], self._num_units, True, self._bias_initializer, self._kernel_initializer))
    new_h = u * state + (1 - u) * c
    return new_h, new_h
seq_labeling.py 文件源码 项目:joint-slu-lm 作者: HadoopIt 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def multilayer_perceptron(_X, input_size, n_hidden, n_class, forward_only=False):
    with variable_scope.variable_scope("DNN"):
      bias_start = 0.0
      weight_hidden = variable_scope.get_variable("Weight_Hidden", [input_size, n_hidden])         
      bias_hidden = variable_scope.get_variable("Bias_Hidden", [n_hidden],
                                                  initializer=init_ops.constant_initializer(bias_start))
      #Hidden layer with RELU activation
      layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, weight_hidden), bias_hidden))

      if not forward_only:
          layer_1 = tf.nn.dropout(layer_1, 0.5)

      weight_out = variable_scope.get_variable("Weight_Out", [n_hidden, n_class])
      bias_out = variable_scope.get_variable("Bias_Out", [n_class],
                                                  initializer=init_ops.constant_initializer(bias_start))  
      output = tf.matmul(layer_1, weight_out) + bias_out
      #regularizers = tf.nn.l2_loss(weight_hidden) + tf.nn.l2_loss(bias_hidden) + tf.nn.l2_loss(weight_out) + tf.nn.l2_loss(bias_out) 
    return output
EUNN.py 文件源码 项目:GORU-tensorflow 作者: jingli9111 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "eunn_cell"):

            state = _eunn_loop(state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)

            input_matrix_init = init_ops.random_uniform_initializer(-0.01, 0.01)
            if self._comp:
                input_matrix_re = vs.get_variable("U_re", [inputs.get_shape()[-1], self._hidden_size], initializer=input_matrix_init)
                input_matrix_im = vs.get_variable("U_im", [inputs.get_shape()[-1], self._hidden_size], initializer=input_matrix_init)
                inputs_re = math_ops.matmul(inputs, input_matrix_re)
                inputs_im = math_ops.matmul(inputs, input_matrix_im)
                inputs = math_ops.complex(inputs_re, inputs_im)
            else:
                input_matrix = vs.get_variable("U", [inputs.get_shape()[-1], self._hidden_size], initializer=input_matrix_init)
                inputs = math_ops.matmul(inputs, input_matrix)

            bias = vs.get_variable("modReLUBias", [self._hidden_size], initializer=init_ops.constant_initializer())
            output = self._activation((inputs + state), bias, self._comp)

        return output, output
GRU.py 文件源码 项目:R-net 作者: minsangkim142 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def call(self, inputs, state):
    """Gated recurrent unit (GRU) with nunits cells."""
    with vs.variable_scope("gates"):  # Reset gate and update gate.
      # We start with bias of 1.0 to not reset and not update.
      bias_ones = self._bias_initializer
      if self._bias_initializer is None:
        dtype = [a.dtype for a in [inputs, state]][0]
        bias_ones = init_ops.constant_initializer(1.0, dtype=dtype)
      value = math_ops.sigmoid(
          linear([inputs, state], 2 * self._num_units, True, bias_ones,
                  self._kernel_initializer))
      r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
    with vs.variable_scope("candidate"):
      c = self._activation(
          linear([inputs, r * state], self._num_units, True,
                  self._bias_initializer, self._kernel_initializer))
    #   recurrent dropout as proposed in https://arxiv.org/pdf/1603.05118.pdf (currently disabled)
      #if self._is_training and Params.dropout is not None:
        #c = tf.nn.dropout(c, 1 - Params.dropout)
    new_h = u * state + (1 - u) * c
    return new_h, new_h
iRNNCellAbs.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):
    """Most basic RNN: output = new_state = activation(W * input + U * state + B)."""
    with vs.variable_scope(scope or type(self).__name__):  # "BasicRNNCell"
        state_out = linearTransformIdentityInit(state, self._num_units)

        if self._bottom == True:
            input_out = linearTransformWithBias([inputs], self._num_units, bias=False, scope=scope)
        else:
            input_out = linearTransformIdentityInit(inputs, self._num_units, scope=scope)
        bias = vs.get_variable(
            "input_bias", [self._num_units],
            dtype=tf.float32,
            initializer=init_ops.constant_initializer(dtype=tf.float32))

    output = tf.abs(state_out + input_out + bias)
    return output, output
dizzyRNNCellOptHackyReLU.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):

        with vs.variable_scope(scope or type(self).__name__):

            t_state = tf.transpose(state)

            state_out = doRotations(t_state, self._rotations)
            input_out = linearTransformWithBias([inputs],
                self._num_units, bias=False, scope=scope)

            state_out = tf.transpose(state_out)

            bias = vs.get_variable(
                "Bias", [self._num_units],
                dtype=tf.float32,
                initializer=init_ops.constant_initializer(dtype=tf.float32))

            output = tf.nn.relu(state_out + input_out + bias)
        return output, output
iRNNCell.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):
    """Most basic RNN: output = new_state = activation(W * input + U * state + B)."""
    with vs.variable_scope(scope or type(self).__name__):  # "BasicRNNCell"
        state_out = linearTransformIdentityInit(state, self._num_units)

        if self._bottom == True:
            input_out = linearTransformWithBias([inputs], self._num_units, bias=False, scope=scope)
        else:
            input_out = linearTransformIdentityInit(inputs, self._num_units, scope=scope)
        bias = vs.get_variable(
            "input_bias", [self._num_units],
            dtype=tf.float32,
            initializer=init_ops.constant_initializer(dtype=tf.float32))

    output = tf.nn.relu(state_out + input_out + bias)
    return output, output
DizzyRHNCell.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):

        with vs.variable_scope(scope or type(self).__name__):

            t_state = tf.transpose(state)

            state_out = doRotations(t_state, self._rotations)
            input_out = linearTransformWithBias([inputs],
                self._num_units, bias=False, scope=scope)

            state_out = tf.transpose(state_out)

            gate = linearTransformWithBias([inputs, state], self._num_units, True, scope='GateLinearTransfrom')
            gate = tf.nn.sigmoid(gate, name='GateSigmoid')

            bias = vs.get_variable(
                "Bias", [self._num_units],
                dtype=tf.float32,
                initializer=init_ops.constant_initializer(dtype=tf.float32))

            input_gate = tf.add(-1.0, gate)
            # print(input_gate)
            output = state * gate + input_gate * tf.abs(state_out + input_out + bias)
        return output, output
dizzyRNNCellOptHacky.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):

        with vs.variable_scope(scope or type(self).__name__):

            t_state = tf.transpose(state)

            state_out = doRotations(t_state, self._rotations)
            input_out = linearTransformWithBias([inputs],
                self._num_units, bias=False, scope=scope)

            state_out = tf.transpose(state_out)

            bias = vs.get_variable(
                "Bias", [self._num_units],
                dtype=tf.float32,
                initializer=init_ops.constant_initializer(dtype=tf.float32))

            output = tf.abs(state_out + input_out + bias)
        return output, output
dizzyRNNCellOpt.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):

        with vs.variable_scope(scope or type(self).__name__):

            t_state = tf.transpose(state)
            t_inputs = tf.transpose(inputs)
            if self._bottom == True:
                [state_out] = rotationTransform([("StateL", t_state)], self._num_units , scope, self._num_rots)
                input_out = linearTransformWithBias([inputs],
                    self._num_units, bias=False, scope=scope)
            else:
                [state_out, input_out] = \
                    rotationTransform([("StateL", t_state), ("InputL", t_inputs)],
                    self._num_units, scope)
                input_out = tf.transpose(input_out)
            state_out = tf.transpose(state_out)


            bias = vs.get_variable(
                "Bias", [self._num_units],
                dtype=tf.float32,
                initializer=init_ops.constant_initializer(dtype=tf.float32))

            output = tf.abs(state_out + input_out + bias)
        return output, output
decompRNNCell.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or type(self).__name__):

            state_rot = rotationTransform(tf.transpose(state), self._num_units, self._num_params,
                self._cos_list,  self._sin_list, self._nsin_list,
                self._cos_idxs, self._sin_idxs, self._nsin_idxs)

            state_scale, sigma = diagonalTransform(state_rot, self._num_units)
            self.sigma = sigma

            state_out = rotationTransform(state_scale, self._num_units, self._num_params,
                self._cos_list,  self._sin_list, self._nsin_list,
                self._cos_idxs, self._sin_idxs, self._nsin_idxs)
            state_out = tf.transpose(state_out)

            input_out = linearTransformWithBias([inputs], self._num_units, bias=False)

            bias = vs.get_variable(
                "Bias", [self._num_units],
                dtype=tf.float32,
                initializer=init_ops.constant_initializer(dtype=tf.float32))

            output = tf.abs(state_out + input_out + bias)
        return output, output
layers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testHorzConvWithBlankImageAndPlaceholder(self):
    image = array_ops.placeholder(dtypes.float32, shape=(None, None, None, 1))
    horz_gradients = layers_lib.conv2d_in_plane(
        image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients,
                        feed_dict={image: np.ones((1, 10, 10, 1))})
      expected = np.zeros((1, 10, 9, 1))

      self.assertAllEqual(result, expected)
layers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def testHorzConvWithRandomImageMultiBatch(self):
    np.random.seed(1)
    image = np.random.rand(5, 10, 10, 1)
    expected = image[:, :, 0:-1, :] - image[:, :, 1:, :]

    tf_image = constant_op.constant(image, dtype=dtypes.float32)
    horz_gradients = layers_lib.conv2d_in_plane(
        tf_image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
layers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testHorzConvWithRandomImageMultiBatchMultiChannel(self):
    np.random.seed(1)
    image = np.random.rand(5, 10, 10, 7)
    expected = image[:, :, 0:-1, :] - image[:, :, 1:, :]

    tf_image = constant_op.constant(image, dtype=dtypes.float32)
    horz_gradients = layers_lib.conv2d_in_plane(
        tf_image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
layers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testHorzConvWithVaryingImage(self):
    image = np.asmatrix(('1.0 2.0 3.0;' '1.1 2.0 4.0;' '-4.3 0.0 8.9'))

    expected = np.asmatrix(('-1.0 -1.0;' '-0.9 -2.0;' '-4.3 -8.9'))
    expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))

    tf_image = constant_op.constant(
        image, shape=(1, 3, 3, 1), dtype=dtypes.float32)
    horz_gradients = layers_lib.conv2d_in_plane(
        tf_image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)

      self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
layers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def testVertConvWithBlankImage(self):
    image = array_ops.ones((1, 10, 10, 1))
    vert_gradients = layers_lib.conv2d_in_plane(
        image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)
      expected = np.zeros((1, 9, 10, 1))

      self.assertAllEqual(result, expected)
optimizers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testNoGlobalStepWithDecay(self):
    optimizers = [
        "SGD", gradient_descent.GradientDescentOptimizer,
        gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
    ]
    for optimizer in optimizers:
      with ops.Graph().as_default() as g, self.test_session(graph=g):
        x = array_ops.placeholder(dtypes.float32, [])
        var = variable_scope.get_variable(
            "test", [], initializer=init_ops.constant_initializer(10))
        loss = math_ops.abs(var * x)
        update_var = variable_scope.get_variable(
            "update", [], initializer=init_ops.constant_initializer(10))
        update_op = state_ops.assign(update_var, 20)
        with self.assertRaisesRegexp(
            ValueError, "global_step is required for learning_rate_decay_fn"):
          optimizers_lib.optimize_loss(
              loss,
              global_step=None,
              learning_rate=0.1,
              learning_rate_decay_fn=_no_op_learning_rate_decay_fn,
              optimizer=optimizer,
              update_ops=[update_op])
optimizers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testNoGlobalStepArg(self):
    optimizers = [
        "SGD", gradient_descent.GradientDescentOptimizer,
        gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
    ]
    for optimizer in optimizers:
      with ops.Graph().as_default() as g, self.test_session(graph=g) as session:
        x, var, loss, global_step = _setup_model()
        update_var = variable_scope.get_variable(
            "update", [], initializer=init_ops.constant_initializer(10))
        update_op = state_ops.assign(update_var, 20)
        train = optimizers_lib.optimize_loss(
            loss,
            global_step=None,
            learning_rate=0.1,
            optimizer=optimizer,
            update_ops=[update_op])
        variables.global_variables_initializer().run()
        session.run(train, feed_dict={x: 5})
        self.assertEqual(9.5, var.eval())
        self.assertEqual(20, update_var.eval())
        self.assertEqual(1, global_step.eval())
optimizers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testUpdateOp(self):
    optimizers = [
        "SGD", gradient_descent.GradientDescentOptimizer,
        gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
    ]
    for optimizer in optimizers:
      with ops.Graph().as_default() as g, self.test_session(graph=g) as session:
        x, var, loss, global_step = _setup_model()
        update_var = variable_scope.get_variable(
            "update", [], initializer=init_ops.constant_initializer(10))
        update_op = state_ops.assign(update_var, 20)
        train = optimizers_lib.optimize_loss(
            loss,
            global_step,
            learning_rate=0.1,
            optimizer=optimizer,
            update_ops=[update_op])
        variables.global_variables_initializer().run()
        session.run(train, feed_dict={x: 5})
        self.assertEqual(9.5, var.eval())
        self.assertEqual(20, update_var.eval())
        self.assertEqual(1, global_step.eval())
optimizers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testUpdateOpWithNoOpDecay(self):
    optimizers = [
        "SGD", gradient_descent.GradientDescentOptimizer,
        gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
    ]
    for optimizer in optimizers:
      with ops.Graph().as_default() as g, self.test_session(graph=g) as session:
        x, var, loss, global_step = _setup_model()
        update_var = variable_scope.get_variable(
            "update", [], initializer=init_ops.constant_initializer(10))
        update_op = state_ops.assign(update_var, 20)
        train = optimizers_lib.optimize_loss(
            loss,
            global_step,
            learning_rate=0.1,
            learning_rate_decay_fn=_no_op_learning_rate_decay_fn,
            optimizer=optimizer,
            update_ops=[update_op])
        variables.global_variables_initializer().run()
        session.run(train, feed_dict={x: 5})
        self.assertEqual(9.5, var.eval())
        self.assertEqual(20, update_var.eval())
        self.assertEqual(1, global_step.eval())
optimizers_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testUpdateOpFromCollection(self):
    optimizers = [
        "SGD", gradient_descent.GradientDescentOptimizer,
        gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
    ]
    for optimizer in optimizers:
      with ops.Graph().as_default() as g, self.test_session(graph=g) as session:
        x, var, loss, global_step = _setup_model()
        update_var = variable_scope.get_variable(
            "update", [], initializer=init_ops.constant_initializer(10))
        update_op = state_ops.assign(update_var, 20)
        ops.add_to_collection(ops.GraphKeys.UPDATE_OPS, update_op)
        train = optimizers_lib.optimize_loss(
            loss, global_step, learning_rate=0.1, optimizer=optimizer)
        variables.global_variables_initializer().run()
        session.run(train, feed_dict={x: 5})
        var_value, update_var_value, global_step_value = session.run(
            [var, update_var, global_step])
        self.assertEqual(var_value, 9.5)
        self.assertEqual(update_var_value, 20)
        self.assertEqual(global_step_value, 1)
feature_column_ops_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def testEmbeddingColumnWithInitializerSucceedsForDNN(self):
    hashed_sparse = feature_column.sparse_column_with_hash_bucket("wire", 10)
    wire_tensor = sparse_tensor.SparseTensor(
        values=["omar", "stringer", "marlo"],
        indices=[[0, 0], [1, 0], [1, 1]],
        dense_shape=[2, 2])
    features = {"wire": wire_tensor}
    init_value = 133.7
    embeded_sparse = feature_column.embedding_column(
        hashed_sparse,
        10,
        initializer=init_ops.constant_initializer(init_value))
    output = feature_column_ops.input_from_feature_columns(features,
                                                           [embeded_sparse])

    with self.test_session():
      variables_lib.global_variables_initializer().run()
      output_eval = output.eval()
      self.assertAllEqual(output_eval.shape, [2, 10])
      self.assertAllClose(output_eval, np.tile(init_value, [2, 10]))
feature_column_ops_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def testDeepColumnsSucceedForDNN(self):
    real_valued = feature_column.real_valued_column("income", 3)
    bucket = feature_column.bucketized_column(
        feature_column.real_valued_column("price", 2),
        boundaries=[0., 10., 100.])
    hashed_sparse = feature_column.sparse_column_with_hash_bucket("wire", 10)
    features = {
        "income":
            constant_op.constant([[20., 10, -5], [110, 0, -7], [-3, 30, 50]]),
        "price":
            constant_op.constant([[20., 200], [110, 2], [-20, -30]]),
        "wire":
            sparse_tensor.SparseTensor(
                values=["omar", "stringer", "marlo"],
                indices=[[0, 0], [1, 0], [2, 0]],
                dense_shape=[3, 1])
    }
    embeded_sparse = feature_column.embedding_column(
        hashed_sparse, 10, initializer=init_ops.constant_initializer(133.7))
    output = feature_column_ops.input_from_feature_columns(
        features, [real_valued, bucket, embeded_sparse])
    with self.test_session():
      variables_lib.global_variables_initializer().run()
      # size of output = 3 (real_valued) + 2 * 4 (bucket) + 10 (embedding) = 21
      self.assertAllEqual(output.eval().shape, [3, 21])
grid_rnn_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testGrid2BasicLSTMCellWithRelu(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.2)):
        x = array_ops.zeros([1, 3])
        m = array_ops.zeros([1, 4])
        cell = grid_rnn_cell.Grid2BasicLSTMCell(
            2, tied=False, non_recurrent_fn=nn_ops.relu)
        self.assertEqual(cell.state_size, 4)

        g, s = cell(x, m)
        self.assertEqual(g.get_shape(), (1, 2))
        self.assertEqual(s.get_shape(), (1, 4))

        sess.run([variables.global_variables_initializer()])
        res = sess.run(
            [g, s],
            {x: np.array([[1., 1., 1.]]),
             m: np.array([[0.1, 0.2, 0.3, 0.4]])})
        self.assertEqual(res[0].shape, (1, 2))
        self.assertEqual(res[1].shape, (1, 4))
        self.assertAllClose(res[0], [[0.31667367, 0.31667367]])
        self.assertAllClose(res[1], [[0.29530135, 0.37520045, 0.17044567,
                                      0.21292259]])
grid_rnn_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testGrid2LSTMCellTied(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([1, 3])
        m = array_ops.zeros([1, 8])
        cell = grid_rnn_cell.Grid2LSTMCell(2, tied=True, use_peepholes=True)
        self.assertEqual(cell.state_size, 8)

        g, s = cell(x, m)
        self.assertEqual(g.get_shape(), (1, 2))
        self.assertEqual(s.get_shape(), (1, 8))

        sess.run([variables.global_variables_initializer()])
        res = sess.run([g, s], {
            x: np.array([[1., 1., 1.]]),
            m: np.array([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]])
        })
        self.assertEqual(res[0].shape, (1, 2))
        self.assertEqual(res[1].shape, (1, 8))
        self.assertAllClose(res[0], [[0.95686918, 0.95686918]])
        self.assertAllClose(res[1], [[2.41515064, 2.41515064, 0.95686918,
                                      0.95686918, 1.38917875, 1.49043763,
                                      0.83884692, 0.86036491]])
grid_rnn_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def testGrid2LSTMCellWithRelu(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([1, 3])
        m = array_ops.zeros([1, 4])
        cell = grid_rnn_cell.Grid2LSTMCell(
            2, use_peepholes=True, non_recurrent_fn=nn_ops.relu)
        self.assertEqual(cell.state_size, 4)

        g, s = cell(x, m)
        self.assertEqual(g.get_shape(), (1, 2))
        self.assertEqual(s.get_shape(), (1, 4))

        sess.run([variables.global_variables_initializer()])
        res = sess.run(
            [g, s],
            {x: np.array([[1., 1., 1.]]),
             m: np.array([[0.1, 0.2, 0.3, 0.4]])})
        self.assertEqual(res[0].shape, (1, 2))
        self.assertEqual(res[1].shape, (1, 4))
        self.assertAllClose(res[0], [[2.1831727, 2.1831727]])
        self.assertAllClose(res[1], [[0.92270052, 1.02325559, 0.66159075,
                                      0.70475441]])
grid_rnn_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testGrid2BasicRNNCell(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([2, 2])
        m = array_ops.zeros([2, 4])
        cell = grid_rnn_cell.Grid2BasicRNNCell(2)
        self.assertEqual(cell.state_size, 4)

        g, s = cell(x, m)
        self.assertEqual(g.get_shape(), (2, 2))
        self.assertEqual(s.get_shape(), (2, 4))

        sess.run([variables.global_variables_initializer()])
        res = sess.run([g, s], {
            x: np.array([[1., 1.], [2., 2.]]),
            m: np.array([[0.1, 0.1, 0.1, 0.1], [0.2, 0.2, 0.2, 0.2]])
        })
        self.assertEqual(res[0].shape, (2, 2))
        self.assertEqual(res[1].shape, (2, 4))
        self.assertAllClose(res[0], [[0.94685763, 0.94685763],
                                     [0.99480951, 0.99480951]])
        self.assertAllClose(res[1],
                            [[0.94685763, 0.94685763, 0.80049908, 0.80049908],
                             [0.99480951, 0.99480951, 0.97574311, 0.97574311]])
grid_rnn_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def testGrid2BasicRNNCellTied(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([2, 2])
        m = array_ops.zeros([2, 4])
        cell = grid_rnn_cell.Grid2BasicRNNCell(2, tied=True)
        self.assertEqual(cell.state_size, 4)

        g, s = cell(x, m)
        self.assertEqual(g.get_shape(), (2, 2))
        self.assertEqual(s.get_shape(), (2, 4))

        sess.run([variables.global_variables_initializer()])
        res = sess.run([g, s], {
            x: np.array([[1., 1.], [2., 2.]]),
            m: np.array([[0.1, 0.1, 0.1, 0.1], [0.2, 0.2, 0.2, 0.2]])
        })
        self.assertEqual(res[0].shape, (2, 2))
        self.assertEqual(res[1].shape, (2, 4))
        self.assertAllClose(res[0], [[0.94685763, 0.94685763],
                                     [0.99480951, 0.99480951]])
        self.assertAllClose(res[1],
                            [[0.94685763, 0.94685763, 0.80049908, 0.80049908],
                             [0.99480951, 0.99480951, 0.97574311, 0.97574311]])
grid_rnn_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testGrid2BasicRNNCellWithRelu(self):
    with self.test_session() as sess:
      with variable_scope.variable_scope(
          'root', initializer=init_ops.constant_initializer(0.5)):
        x = array_ops.zeros([1, 2])
        m = array_ops.zeros([1, 2])
        cell = grid_rnn_cell.Grid2BasicRNNCell(2, non_recurrent_fn=nn_ops.relu)
        self.assertEqual(cell.state_size, 2)

        g, s = cell(x, m)
        self.assertEqual(g.get_shape(), (1, 2))
        self.assertEqual(s.get_shape(), (1, 2))

        sess.run([variables.global_variables_initializer()])
        res = sess.run([g, s],
                       {x: np.array([[1., 1.]]),
                        m: np.array([[0.1, 0.1]])})
        self.assertEqual(res[0].shape, (1, 2))
        self.assertEqual(res[1].shape, (1, 2))
        self.assertAllClose(res[0], [[1.80049896, 1.80049896]])
        self.assertAllClose(res[1], [[0.80049896, 0.80049896]])


问题


面经


文章

微信
公众号

扫码关注公众号