python类unknown_shape()的实例源码

tf_image.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def fix_image_flip_shape(image, result):
    """Set the shape to 3 dimensional if we don't know anything else.
    Args:
      image: original image size
      result: flipped or transformed image
    Returns:
      An image whose shape is at least None,None,None.
    """
    image_shape = image.get_shape()
    if image_shape == tensor_shape.unknown_shape():
        result.set_shape([None, None, None])
    else:
        result.set_shape(image_shape)
    return result


# =========================================================================== #
# Image + BBoxes methods: cropping, resizing, flipping, ...
# =========================================================================== #
tf_image.py 文件源码 项目:MobileNet 作者: Zehaos 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fix_image_flip_shape(image, result):
    """Set the shape to 3 dimensional if we don't know anything else.
    Args:
      image: original image size
      result: flipped or transformed image
    Returns:
      An image whose shape is at least None,None,None.
    """
    image_shape = image.get_shape()
    if image_shape == tensor_shape.unknown_shape():
        result.set_shape([None, None, None])
    else:
        result.set_shape(image_shape)
    return result


# =========================================================================== #
# Image + BBoxes methods: cropping, resizing, flipping, ...
# =========================================================================== #
tf_image.py 文件源码 项目:seglink 作者: dengdan 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def fix_image_flip_shape(image, result):
    """Set the shape to 3 dimensional if we don't know anything else.
    Args:
      image: original image size
      result: flipped or transformed image
    Returns:
      An image whose shape is at least None,None,None.
    """
    image_shape = image.get_shape()
    if image_shape == tensor_shape.unknown_shape():
        result.set_shape([None, None, None])
    else:
        result.set_shape(image_shape)
    return result


# =========================================================================== #
# Image + BBoxes methods: cropping, resizing, flipping, ...
# =========================================================================== #
tf_image.py 文件源码 项目:DAVIS-2016-Chanllege-Solution 作者: tangyuhao 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def fix_image_flip_shape(image, result):
    """Set the shape to 3 dimensional if we don't know anything else.
    Args:
      image: original image size
      result: flipped or transformed image
    Returns:
      An image whose shape is at least None,None,None.
    """
    image_shape = image.get_shape()
    if image_shape == tensor_shape.unknown_shape():
        result.set_shape([None, None, None])
    else:
        result.set_shape(image_shape)
    return result


# =========================================================================== #
# Image + BBoxes methods: cropping, resizing, flipping, ...
# =========================================================================== #
variable_ops_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def testset_shape(self):
    p = state_ops.variable_op([1, 2], tf.complex64)
    self.assertEqual([1, 2], p.get_shape())
    p = state_ops.variable_op([1, 2], tf.complex64, set_shape=False)
    self.assertEqual(tensor_shape.unknown_shape(), p.get_shape())
variable_ops_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testAssignNoVarShape(self):
    value = np.array([[42.0+42.0j, 43.0+43.0j]])
    var = state_ops.variable_op(value.shape, tf.complex64, set_shape=False)
    self.assertEqual(tensor_shape.unknown_shape(), var.get_shape())
    assigned = tf.assign(var, value)
    self.assertShapeEqual(value, assigned)
variable_ops_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testAssignNoVarShapeNoValidateShape(self):
    value = np.array([[42.0+42.0j, 43.0+43.0j]])
    var = state_ops.variable_op(value.shape, tf.complex64, set_shape=False)
    self.assertEqual(tensor_shape.unknown_shape(), var.get_shape())
    assigned = tf.assign(var, value, validate_shape=False)
    self.assertShapeEqual(value, assigned)
variable_ops_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _NewShapelessTensor(self):
    tensor = tf.placeholder(tf.complex64)
    self.assertEqual(tensor_shape.unknown_shape(), tensor.get_shape())
    return tensor
variable_ops_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testAssignNoValueShapeNoValidateShape(self):
    value = self._NewShapelessTensor()
    shape = [1, 2]
    var = state_ops.variable_op(shape, tf.complex64)
    self.assertEqual(shape, var.get_shape())
    assigned = tf.assign(var, value, validate_shape=False)
    self.assertEqual(tensor_shape.unknown_shape(), assigned.get_shape())
variable_ops_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def testAssignNoShapeNoValidateShape(self):
    with self.test_session():
      value = self._NewShapelessTensor()
      var = state_ops.variable_op([1, 2], tf.complex64, set_shape=False)
      self.assertEqual(tensor_shape.unknown_shape(), var.get_shape())
      self.assertEqual(tensor_shape.unknown_shape(),
                       tf.assign(var, value, validate_shape=False).get_shape())
variable_ops_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testAssignUpdateNoShape(self):
    var = state_ops.variable_op([1, 2], tf.complex64, set_shape=False)
    added = tf.assign_add(var, self._NewShapelessTensor())
    self.assertEqual(tensor_shape.unknown_shape(), added.get_shape())
    subbed = tf.assign_sub(var, self._NewShapelessTensor())
    self.assertEqual(tensor_shape.unknown_shape(), subbed.get_shape())
mocks.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_shape(self):
    return tensor_shape.unknown_shape()
mocks.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, name, dtype):
    super(MockSparseTensor, self).__init__()
    self._name = name
    self._dtype = dtype
    self._shape = tensor_shape.unknown_shape()
    self.indices = MockTensor("%s indices" % name, tf.int32)
    self.values = MockTensor("%s values" % name, dtype)
mocks.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_shape(self):
    return tensor_shape.unknown_shape()
rnn.py 文件源码 项目:ROLO 作者: Guanghan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _reverse_seq(input_seq, lengths):
  """Reverse a list of Tensors up to specified lengths.

  Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, n_features)
               or nested tuples of tensors.
    lengths:   A `Tensor` of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply reverses
               the list.

  Returns:
    time-reversed sequence
  """
  if lengths is None:
    return list(reversed(input_seq))

  flat_input_seq = tuple(nest.flatten(input_) for input_ in input_seq)

  flat_results = [[] for _ in range(len(input_seq))]
  for sequence in zip(*flat_input_seq):
    input_shape = tensor_shape.unknown_shape(
        ndims=sequence[0].get_shape().ndims)
    for input_ in sequence:
      input_shape.merge_with(input_.get_shape())
      input_.set_shape(input_shape)

    # Join into (time, batch_size, depth)
    s_joined = array_ops.pack(sequence)

    # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
    if lengths is not None:
      lengths = math_ops.to_int64(lengths)

    # Reverse along dimension 0
    s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
    # Split again into list
    result = array_ops.unpack(s_reversed)
    for r, flat_result in zip(result, flat_results):
      r.set_shape(input_shape)
      flat_result.append(r)

  results = [nest.pack_sequence_as(structure=input_, flat_sequence=flat_result)
             for input_, flat_result in zip(input_seq, flat_results)]
  return results
mocks.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_shape(self):
    return tensor_shape.unknown_shape()
mocks.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, name, dtype):
    super(MockSparseTensor, self).__init__()
    self._name = name
    self._dtype = dtype
    self._shape = tensor_shape.unknown_shape()
    self.indices = MockTensor("%s indices" % name, dtypes.int32)
    self.values = MockTensor("%s values" % name, dtype)
estimator_utils_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_to_feature_columns_and_input_fn(self):
    df = setup_test_df_3layer()
    feature_columns, input_fn = (
        estimator_utils.to_feature_columns_and_input_fn(
            df,
            base_input_keys_with_defaults={"a": 1,
                                           "b": 2,
                                           "c": 3,
                                           "d": 4},
            target_keys=["g"],
            feature_keys=["a", "b", "f"]))

    expected_feature_column_a = feature_column.DataFrameColumn(
        "a", learn.PredefinedSeries(
            "a", tf.FixedLenFeature(tensor_shape.unknown_shape(), tf.int32, 1)))
    expected_feature_column_b = feature_column.DataFrameColumn(
        "b", learn.PredefinedSeries("b", tf.VarLenFeature(tf.int32)))
    expected_feature_column_f = feature_column.DataFrameColumn(
        "f", learn.TransformedSeries([
            learn.PredefinedSeries("c", tf.FixedLenFeature(
                tensor_shape.unknown_shape(), tf.int32, 3)),
            learn.PredefinedSeries("d", tf.VarLenFeature(tf.int32))
        ], mocks.Mock2x2Transform("iue", "eui", "snt"), "out2"))

    expected_feature_columns = [expected_feature_column_a,
                                expected_feature_column_b,
                                expected_feature_column_f]
    self.assertEqual(sorted(expected_feature_columns), sorted(feature_columns))

    base_features, targets = input_fn()
    expected_base_features = {
        "a": mocks.MockTensor("Tensor a", tf.int32),
        "b": mocks.MockSparseTensor("SparseTensor b", tf.int32),
        "c": mocks.MockTensor("Tensor c", tf.int32),
        "d": mocks.MockSparseTensor("SparseTensor d", tf.int32)
    }
    self.assertEqual(expected_base_features, base_features)

    expected_targets = mocks.MockTensor("Out iue", tf.int32)
    self.assertEqual(expected_targets, targets)

    self.assertEqual(3, len(feature_columns))
estimator_utils_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_to_feature_columns_and_input_fn(self):
    df = setup_test_df_3layer()
    feature_columns, input_fn = (
        estimator_utils.to_feature_columns_and_input_fn(
            df,
            base_input_keys_with_defaults={"a": 1,
                                           "b": 2,
                                           "c": 3,
                                           "d": 4},
            label_keys=["g"],
            feature_keys=["a", "b", "f"]))

    expected_feature_column_a = feature_column.DataFrameColumn(
        "a", learn.PredefinedSeries(
            "a", tf.FixedLenFeature(tensor_shape.unknown_shape(), tf.int32, 1)))
    expected_feature_column_b = feature_column.DataFrameColumn(
        "b", learn.PredefinedSeries("b", tf.VarLenFeature(tf.int32)))
    expected_feature_column_f = feature_column.DataFrameColumn(
        "f", learn.TransformedSeries([
            learn.PredefinedSeries("c", tf.FixedLenFeature(
                tensor_shape.unknown_shape(), tf.int32, 3)),
            learn.PredefinedSeries("d", tf.VarLenFeature(tf.int32))
        ], mocks.Mock2x2Transform("iue", "eui", "snt"), "out2"))

    expected_feature_columns = [expected_feature_column_a,
                                expected_feature_column_b,
                                expected_feature_column_f]
    self.assertEqual(sorted(expected_feature_columns), sorted(feature_columns))

    base_features, labels = input_fn()
    expected_base_features = {
        "a": mocks.MockTensor("Tensor a", tf.int32),
        "b": mocks.MockSparseTensor("SparseTensor b", tf.int32),
        "c": mocks.MockTensor("Tensor c", tf.int32),
        "d": mocks.MockSparseTensor("SparseTensor d", tf.int32)
    }
    self.assertEqual(expected_base_features, base_features)

    expected_labels = mocks.MockTensor("Out iue", tf.int32)
    self.assertEqual(expected_labels, labels)

    self.assertEqual(3, len(feature_columns))
predict.py 文件源码 项目:deepsleepnet 作者: akaraspt 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _reverse_seq(input_seq, lengths):
    """Reverse a list of Tensors up to specified lengths.
    Args:
        input_seq: Sequence of seq_len tensors of dimension (batch_size, n_features)
                   or nested tuples of tensors.
        lengths:   A `Tensor` of dimension batch_size, containing lengths for each
                   sequence in the batch. If "None" is specified, simply reverses
                   the list.
    Returns:
        time-reversed sequence
    """
    if lengths is None:
        return list(reversed(input_seq))

    flat_input_seq = tuple(nest.flatten(input_) for input_ in input_seq)

    flat_results = [[] for _ in range(len(input_seq))]
    for sequence in zip(*flat_input_seq):
        input_shape = tensor_shape.unknown_shape(
                ndims=sequence[0].get_shape().ndims)
        for input_ in sequence:
            input_shape.merge_with(input_.get_shape())
            input_.set_shape(input_shape)

        # Join into (time, batch_size, depth)
        s_joined = array_ops.pack(sequence)

        # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
        if lengths is not None:
            lengths = math_ops.to_int64(lengths)

        # Reverse along dimension 0
        s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
        # Split again into list
        result = array_ops.unpack(s_reversed)
        for r, flat_result in zip(result, flat_results):
            r.set_shape(input_shape)
            flat_result.append(r)

    results = [nest.pack_sequence_as(structure=input_, flat_sequence=flat_result)
               for input_, flat_result in zip(input_seq, flat_results)]
    return results
rnn.py 文件源码 项目:diversity_based_attention 作者: PrekshaNema25 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _reverse_seq(input_seq, lengths):
  """Reverse a list of Tensors up to specified lengths.

  Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, n_features)
               or nested tuples of tensors.
    lengths:   A `Tensor` of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply reverses
               the list.

  Returns:
    time-reversed sequence
  """
  if lengths is None:
    return list(reversed(input_seq))

  flat_input_seq = tuple(nest.flatten(input_) for input_ in input_seq)

  flat_results = [[] for _ in range(len(input_seq))]
  for sequence in zip(*flat_input_seq):
    input_shape = tensor_shape.unknown_shape(
        ndims=sequence[0].get_shape().ndims)
    for input_ in sequence:
      input_shape.merge_with(input_.get_shape())
      input_.set_shape(input_shape)

    # Join into (time, batch_size, depth)
    s_joined = array_ops.pack(sequence)

    # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
    if lengths is not None:
      lengths = math_ops.to_int64(lengths)

    # Reverse along dimension 0
    s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
    # Split again into list
    result = array_ops.unpack(s_reversed)
    for r, flat_result in zip(result, flat_results):
      r.set_shape(input_shape)
      flat_result.append(r)

  results = [nest.pack_sequence_as(structure=input_, flat_sequence=flat_result)
             for input_, flat_result in zip(input_seq, flat_results)]
  return results
estimator_utils_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_to_feature_columns_and_input_fn(self):
    df = setup_test_df_3layer()
    feature_columns, input_fn = (
        estimator_utils.to_feature_columns_and_input_fn(
            df,
            base_input_keys_with_defaults={"a": 1,
                                           "b": 2,
                                           "c": 3,
                                           "d": 4},
            label_keys=["g"],
            feature_keys=["a", "b", "f"]))

    expected_feature_column_a = feature_column.DataFrameColumn(
        "a",
        learn.PredefinedSeries(
            "a",
            parsing_ops.FixedLenFeature(tensor_shape.unknown_shape(),
                                        dtypes.int32, 1)))
    expected_feature_column_b = feature_column.DataFrameColumn(
        "b",
        learn.PredefinedSeries("b", parsing_ops.VarLenFeature(dtypes.int32)))
    expected_feature_column_f = feature_column.DataFrameColumn(
        "f",
        learn.TransformedSeries([
            learn.PredefinedSeries("c",
                                   parsing_ops.FixedLenFeature(
                                       tensor_shape.unknown_shape(),
                                       dtypes.int32, 3)),
            learn.PredefinedSeries("d", parsing_ops.VarLenFeature(dtypes.int32))
        ], mocks.Mock2x2Transform("iue", "eui", "snt"), "out2"))

    expected_feature_columns = [
        expected_feature_column_a, expected_feature_column_b,
        expected_feature_column_f
    ]
    self.assertEqual(sorted(expected_feature_columns), sorted(feature_columns))

    base_features, labels = input_fn()
    expected_base_features = {
        "a": mocks.MockTensor("Tensor a", dtypes.int32),
        "b": mocks.MockSparseTensor("SparseTensor b", dtypes.int32),
        "c": mocks.MockTensor("Tensor c", dtypes.int32),
        "d": mocks.MockSparseTensor("SparseTensor d", dtypes.int32)
    }
    self.assertEqual(expected_base_features, base_features)

    expected_labels = mocks.MockTensor("Out iue", dtypes.int32)
    self.assertEqual(expected_labels, labels)

    self.assertEqual(3, len(feature_columns))


问题


面经


文章

微信
公众号

扫码关注公众号