python类scalar()的实例源码

retrain.py 文件源码 项目:tensorflow-prebuilt-classifier 作者: recursionbane 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
tf_retrain.py 文件源码 项目:image_recognition 作者: tue-robotics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Nothing.
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(result_tensor, 1), \
        tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step
retrain.py 文件源码 项目:tensorflow-image-classifier 作者: burliEnterprises 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:powerai-transfer-learning 作者: IBM 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:inception-retrain 作者: Dataweekends 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
train.py 文件源码 项目:image-classification-tensorflow 作者: xuetsing 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
    """
    Brief:
        Inserts the operations we need to evaluate the accuracy of our results.
    Args:
        result_tensor: The new final node that produces results.
        ground_truth_tensor: The node we feed ground truth data
        into.
    Returns:
        Tuple of (evaluation step, prediction).
    """
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            prediction = tf.argmax(result_tensor, 1)
            correct_prediction = tf.equal(
                    prediction, tf.argmax(ground_truth_tensor, 1))
        with tf.name_scope('accuracy'):
            evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', evaluation_step)
    return evaluation_step, prediction
retrain.py 文件源码 项目:tensorflow-yys 作者: ystyle 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
training.py 文件源码 项目:document-classification 作者: nagelflorian 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain_v2.py 文件源码 项目:inception-face-shape-classifier 作者: adonistio 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
lookup_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, table_ref, default_value, initializer):
    """Construct a table object from a table reference.

    If requires a table initializer object (subclass of `TableInitializerBase`).
    It provides the table key and value types, as well as the op to initialize
    the table. The caller is responsible to execute the initialization op.

    Args:
      table_ref: The table reference, i.e. the output of the lookup table ops.
      default_value: The value to use if a key is missing in the table.
      initializer: The table initializer to use.
    """
    super(InitializableLookupTableBase, self).__init__(
        initializer.key_dtype, initializer.value_dtype,
        table_ref.op.name.split("/")[-1])
    self._table_ref = table_ref
    self._default_value = ops.convert_to_tensor(default_value,
                                                dtype=self._value_dtype)
    self._default_value.get_shape().merge_with(tensor_shape.scalar())
    self._init = initializer.initialize(self)
lookup_ops.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, table_ref, default_value, initializer):
    """Construct a table object from a table reference.

    If requires a table initializer object (subclass of `TableInitializerBase`).
    It provides the table key and value types, as well as the op to initialize
    the table. The caller is responsible to execute the initialization op.

    Args:
      table_ref: The table reference, i.e. the output of the lookup table ops.
      default_value: The value to use if a key is missing in the table.
      initializer: The table initializer to use.
    """
    super(InitializableLookupTableBase, self).__init__(
        initializer.key_dtype, initializer.value_dtype,
        table_ref.op.name.split("/")[-1])
    self._table_ref = table_ref
    self._default_value = ops.convert_to_tensor(default_value,
                                                dtype=self._value_dtype)
    self._default_value.get_shape().merge_with(tensor_shape.scalar())
    self._init = initializer.initialize(self)
retrain.py 文件源码 项目:tensorflow-for-poets-2 作者: googlecodelabs 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:Tensorflow-Image-Classification 作者: AxelAli 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Nothing.
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(result_tensor, 1), \
        tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step
retrain.py 文件源码 项目:MachineLearningGoogleSeries 作者: TheCoinTosser 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:ZOO-Attack 作者: huanzhang12 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:tensorflow-image-classifier 作者: damianmoore 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:ctrl-f-vision 作者: osmanio2 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:tensorflow-video-classifier 作者: burliEnterprises 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:transfer_learning_sound_classification 作者: lukeinator42 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
retrain.py 文件源码 项目:tensorflow-image-detection 作者: ArunMichaelDsouza 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction
lookup_ops.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, table_ref, default_value, initializer):
    """Construct a table object from a table reference.

    If requires a table initializer object (subclass of `TableInitializerBase`).
    It provides the table key and value types, as well as the op to initialize
    the table. The caller is responsible to execute the initialization op.

    Args:
      table_ref: The table reference, i.e. the output of the lookup table ops.
      default_value: The value to use if a key is missing in the table.
      initializer: The table initializer to use.
    """
    super(InitializableLookupTableBase, self).__init__(
        initializer.key_dtype, initializer.value_dtype,
        table_ref.op.name.split("/")[-1])
    self._table_ref = table_ref
    self._default_value = ops.convert_to_tensor(default_value,
                                                dtype=self._value_dtype)
    self._default_value.get_shape().merge_with(tensor_shape.scalar())
    self._init = initializer.initialize(self)
retrain.py 文件源码 项目:tensorflow-prebuilt-classifier 作者: recursionbane 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)
tf_retrain.py 文件源码 项目:image_recognition 作者: tue-robotics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def variable_summaries(var, name):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean/' + name, mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev/' + name, stddev)
    tf.summary.scalar('max/' + name, tf.reduce_max(var))
    tf.summary.scalar('min/' + name, tf.reduce_min(var))
    tf.summary.histogram(name, var)
retrain.py 文件源码 项目:tensorflow-image-classifier 作者: burliEnterprises 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)
retrain.py 文件源码 项目:powerai-transfer-learning 作者: IBM 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)
selu.py 文件源码 项目:Clairvoyante 作者: aquaskyline 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def dropout_selu(x, rate, alpha= -1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0,
                 noise_shape=None, seed=None, name=None, training=False):
    """Dropout to a value with rescaling."""

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        alpha.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1-binary_tensor)

        a = math_ops.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * math_ops.pow(alpha-fixedPointMean,2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training,
            lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
            lambda: array_ops.identity(x))
retrain.py 文件源码 项目:inception-retrain 作者: Dataweekends 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)
train.py 文件源码 项目:image-classification-tensorflow 作者: xuetsing 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def variable_summaries(var):
    """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean', mean)
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev)
        tf.summary.scalar('max', tf.reduce_max(var))
        tf.summary.scalar('min', tf.reduce_min(var))
        tf.summary.histogram('histogram', var)
retrain.py 文件源码 项目:tensorflow-yys 作者: ystyle 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)
training.py 文件源码 项目:document-classification 作者: nagelflorian 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)


问题


面经


文章

微信
公众号

扫码关注公众号