python类convert_variables_to_constants()的实例源码

load.py 文件源码 项目:lego_yolo 作者: dEcmir 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def freeze_graph(model_folder):
    # We retrieve our checkpoint fullpath
    checkpoint = tf.train.get_checkpoint_state(model_folder)
    input_checkpoint = checkpoint.model_checkpoint_path

    # We precise the file fullname of our freezed graph
    absolute_model_folder = "/".join(input_checkpoint.split('/')[:-1])
    output_graph = absolute_model_folder + "/frozen_model.pb"

    # Before exporting our graph, we need to precise what is our output node
    # This is how TF decides what part of the Graph he has to keep and what part it can dump
    # NOTE: this variables is plural, because you can have multiple output
    # nodes
    output_node_names = "29_fully_connected"

    # We clear the devices, to allow TensorFlow to control on the loading
    # where it wants operations to be calculated
    clear_devices = True

    # We import the meta graph and retrive a Saver
    saver = tf.train.import_meta_graph(
        input_checkpoint + '.meta', clear_devices=clear_devices)

    # We retrieve the protobuf graph definition
    graph = tf.get_default_graph()
    input_graph_def = graph.as_graph_def()

    # We start a session and restore the graph weights
    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)

        # We use a built-in TF helper to export variables to constant
        output_graph_def = graph_util.convert_variables_to_constants(
            sess,  # The session is used to retrieve the weights
            input_graph_def,  # The graph_def is used to retrieve the nodes
            # The output node names are used to select the usefull nodes
            output_node_names.split(",")
        )

        # Finally we serialize and dump the output graph to the filesystem
        with tf.gfile.GFile(output_graph, "wb") as f:
            f.write(output_graph_def.SerializeToString())
        print("%d ops in the final graph." % len(output_graph_def.node))
freeze_graph.py 文件源码 项目:pgnet 作者: galeone 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def freeze_graph(input_graph, input_saver, input_binary, input_checkpoint,
                 output_node_names, restore_op_name, filename_tensor_name,
                 output_graph, clear_devices, initializer_nodes):
    """Converts all variables in a graph and checkpoint into constants."""

    if not tf.gfile.Exists(input_graph):
        print("Input graph file '" + input_graph + "' does not exist!")
        return -1

    if input_saver and not tf.gfile.Exists(input_saver):
        print("Input saver file '" + input_saver + "' does not exist!")
        return -1

    if not tf.gfile.Glob(input_checkpoint):
        print("Input checkpoint '" + input_checkpoint + "' doesn't exist!")
        return -1

    if not output_node_names:
        print("You need to supply the name of a node to --output_node_names.")
        return -1

    input_graph_def = tf.GraphDef()
    mode = "rb" if input_binary else "r"
    with tf.gfile.FastGFile(input_graph, mode) as f:
        if input_binary:
            input_graph_def.ParseFromString(f.read())
        else:
            text_format.Merge(f.read(), input_graph_def)
    # Remove all the explicit device specifications for this node. This helps to
    # make the graph more portable.
    if clear_devices:
        for node in input_graph_def.node:
            node.device = ""
    _ = tf.import_graph_def(input_graph_def, name="")

    with tf.Session() as sess:
        if input_saver:
            with tf.gfile.FastGFile(input_saver, mode) as f:
                saver_def = tf.train.SaverDef()
                if input_binary:
                    saver_def.ParseFromString(f.read())
                else:
                    text_format.Merge(f.read(), saver_def)
                saver = tf.train.Saver(saver_def=saver_def)
                saver.restore(sess, input_checkpoint)
        else:
            sess.run([restore_op_name],
                     {filename_tensor_name: input_checkpoint})
            if initializer_nodes:
                sess.run(initializer_nodes)
        output_graph_def = graph_util.convert_variables_to_constants(
            sess, input_graph_def, output_node_names.split(","))

    with tf.gfile.GFile(output_graph, "wb") as f:
        f.write(output_graph_def.SerializeToString())
    print("%d ops in the final graph." % len(output_graph_def.node))


问题


面经


文章

微信
公众号

扫码关注公众号