python类get_model_variables()的实例源码

export_model.py 文件源码 项目:yt8m 作者: forwchen 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:mlc2017-online 作者: machine-learning-challenge 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    model_input_raw, labels_batch = (
        self.reader.prepare_serialized_examples(serialized_examples))

    model_input = model_input_raw

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_classes=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      prediction, index = tf.nn.top_k(predictions, 1)
    return prediction, index
export_model.py 文件源码 项目:mlc2017-online 作者: machine-learning-challenge 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    image_id, model_input_raw, labels_batch = (
        self.reader.prepare_serialized_examples(serialized_examples))

    model_input = model_input_raw

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_classes=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      prediction, index = tf.nn.top_k(predictions, 1)
    return image_id, prediction, index
export_model.py 文件源码 项目:youtube-8m 作者: google 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:Video-Classification 作者: boyaolin 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
net.py 文件源码 项目:DenseHumanBodyCorrespondences 作者: halimacc 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def classify(model_range, seg_range, feature_lr, classifier_lr):
        feat_opt = tf.train.AdamOptimizer(feature_lr)
        clas_opt = tf.train.AdamOptimizer(classifier_lr)
        for model in model_range:
            for seg in seg_range:
                with tf.variable_scope('classifier-{}-{}'.format(model, seg)):
                    self.preds[(model, seg)] = slim.conv2d(self.feature, 500, [1, 1])
                    self.clas_vars[(model, seg)] = slim.get_model_variables()[-2:]

                with tf.variable_scope('losses-{}-{}'.format(model, seg)):
                    self.losses[(model, seg)] = self.loss(self.labels, self.preds[(model, seg)])
                    grad = tf.gradients(self.losses[(model, seg)], self.feat_vars + self.clas_vars[(model, seg)])
                    train_op_feat = feat_opt.apply_gradients(zip(grad[:-2], self.feat_vars))
                    train_op_clas = clas_opt.apply_gradients(zip(grad[-2:], self.clas_vars[(model, seg)]))
                    self.train_ops[(model, seg)] = tf.group(train_op_feat, train_op_clas)
        return self.losses, self.train_ops
export_model.py 文件源码 项目:Youtube-8M-WILLOW 作者: antoine77340 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):    

    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.name_scope("model"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions, 
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      layers_keep_probs=tf.Variable([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], tf.float32, name="layers_keep_probs")
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False, 
          layers_keep_probs=layers_keep_probs)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:Y8M 作者: mpekalski 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      layers_keep_probs=tf.Variable([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], tf.float32, name="layers_keep_probs")
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False, 
          layers_keep_probs=layers_keep_probs)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
dm_learner.py 文件源码 项目:deepmodels 作者: learningsociety 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def save_model_for_prediction(self, save_ckpt_fn, vars_to_save=None):
    """Save model data only needed for prediction.

    Args:
      save_ckpt_fn: checkpoint file to save.
      vars_to_save: a list of variables to save.
    """
    if vars_to_save is None:
      vars_to_save = slim.get_model_variables()
      vars_restore_to_exclude = []
      for scope in self.dm_model.restore_scope_exclude:
        vars_restore_to_exclude.extend(slim.get_variables(scope))
      # remove not restored variables.
      vars_to_save = [
          v for v in vars_to_save if v not in vars_restore_to_exclude
      ]
    base_model.save_model(save_ckpt_fn, self.sess, vars_to_save)
slim_train_test.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __add_summaries(self,end_points,learning_rate,total_loss):
        for end_point in end_points:
            x = end_points[end_point]
            tf.summary.histogram('activations/' + end_point, x)
            tf.summary.scalar('sparsity/' + end_point, tf.nn.zero_fraction(x))
        for loss in tf.get_collection(tf.GraphKeys.LOSSES):
            tf.summary.scalar('losses/%s' % loss.op.name, loss)
        # Add total_loss to summary.
        tf.summary.scalar('total_loss', total_loss)

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            tf.summary.histogram(variable.op.name, variable)
        tf.summary.scalar('learning_rate', learning_rate)

        return
train_model.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __add_summaries(self,end_points,learning_rate,total_loss):
        # Add summaries for end_points (activations).

        for end_point in end_points:
            x = end_points[end_point]
            tf.summary.histogram('activations/' + end_point, x)
            tf.summary.scalar('sparsity/' + end_point,
                                            tf.nn.zero_fraction(x))
        # Add summaries for losses and extra losses.

        tf.summary.scalar('total_loss', total_loss)
        for loss in tf.get_collection('EXTRA_LOSSES'):
            tf.summary.scalar(loss.op.name, loss)

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            tf.summary.histogram(variable.op.name, variable)

        return
export_model.py 文件源码 项目:Youtube8mdataset_kagglechallenge 作者: jasonlee27 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:youtube 作者: taufikxu 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:google_ml_challenge 作者: SSUHan 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    model_input_raw, labels_batch = (
        self.reader.prepare_serialized_examples(serialized_examples))

    model_input = model_input_raw

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_classes=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      prediction, index = tf.nn.top_k(predictions, 1)
    return prediction, index
export_model.py 文件源码 项目:google_ml_challenge 作者: SSUHan 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    image_id, model_input_raw, labels_batch = (
        self.reader.prepare_serialized_examples(serialized_examples))

    model_input = model_input_raw

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_classes=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      prediction, index = tf.nn.top_k(predictions, 1)
    return image_id, prediction, index
utils.py 文件源码 项目:GestureRecognition 作者: gkchai 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_init_fn_to_restore(master_checkpoint, train_dir):
    """Creates an init operations to restore weights from various checkpoints.
    master_checkpoint is path to a checkpoint which contains all weights for
    the whole model.
    """
    if master_checkpoint is None:
        return None

    # Warn the user if a checkpoint exists in the train_dir. Then we'll be
    # ignoring the checkpoint path anyway.
    if tf.train.latest_checkpoint(train_dir):
        tf.logging.info(
            'Ignoring --checkpoint_path because a checkpoint already exists in %s'
            % train_dir)
        return None

    if tf.gfile.IsDirectory(master_checkpoint):
        checkpoint_path = tf.train.latest_checkpoint(master_checkpoint)
    else:
        checkpoint_path = master_checkpoint

    tf.logging.info('Fine-tuning from %s' % checkpoint_path)
    return slim.assign_from_checkpoint_fn(checkpoint_path, slim.get_model_variables())
export_model.py 文件源码 项目:kaggle-youtube-8m 作者: liufuyang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):    

    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.name_scope("model"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions, 
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:tutorial_mnist 作者: machine-learning-challenge 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    model_input_raw, labels_batch = (
        self.reader.prepare_serialized_examples(serialized_examples))

    model_input = model_input_raw

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_classes=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      prediction, index = tf.nn.top_k(predictions, 1)
    return prediction, index
export_model.py 文件源码 项目:u8m_test 作者: hxkk 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:youtube-8m 作者: Tsingularity 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False,
          keep_prob=1.0)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
export_model.py 文件源码 项目:youtube-8m 作者: Tsingularity 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_prediction_graph(self, serialized_examples):
    video_id, model_input_raw, labels_batch, num_frames = (
        self.reader.prepare_serialized_examples(serialized_examples))

    feature_dim = len(model_input_raw.get_shape()) - 1
    model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)

    with tf.variable_scope("tower"):
      result = self.model.create_model(
          model_input,
          num_frames=num_frames,
          vocab_size=self.reader.num_classes,
          labels=labels_batch,
          is_training=False)

      for variable in slim.get_model_variables():
        tf.summary.histogram(variable.op.name, variable)

      predictions = result["predictions"]

      top_predictions, top_indices = tf.nn.top_k(predictions,
          _TOP_PREDICTIONS_IN_OUTPUT)
    return video_id, top_indices, top_predictions
slim_walk.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def disp_model_info():
    with tf.Graph().as_default():
        # Dummy placeholders for arbitrary number of 1d inputs and outputs

        inputs = tf.placeholder(tf.float32, shape=(None, 1))
        outputs = tf.placeholder(tf.float32, shape=(None, 1))

        # Build model
        predictions, end_points = regression_model(inputs)

        # Print name and shape of each tensor.
        print("Layers")
        for k, v in end_points.items():
            print('name = {}, shape = {}'.format(v.name, v.get_shape()))

        # Print name and shape of parameter nodes  (values not yet initialized)
        print("\n")
        print("Parameters")
        for v in slim.get_model_variables():
            print('name = {}, shape = {}'.format(v.name, v.get_shape()))

        print("\n")
        print("Local Parameters")
        for v in slim.get_local_variables():
            print('name = {}, shape = {}'.format(v.name, v.get_shape()))
    return
pretrained.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def use_inceptionv4(self):
        image_size = inception.inception_v4.default_image_size
        img_path = "../../data/misec_images/EnglishCockerSpaniel_simon.jpg"
        checkpoint_path = "../../data/trained_models/inception_v4/inception_v4.ckpt"

        with tf.Graph().as_default():

            image_string = tf.read_file(img_path)
            image = tf.image.decode_jpeg(image_string, channels=3)
            processed_image = inception_preprocessing.preprocess_image(image, image_size, image_size, is_training=False)
            processed_images  = tf.expand_dims(processed_image, 0)

            # Create the model, use the default arg scope to configure the batch norm parameters.
            with slim.arg_scope(inception.inception_v4_arg_scope()):
                logits, _ = inception.inception_v4(processed_images, num_classes=1001, is_training=False)
            probabilities = tf.nn.softmax(logits)

            init_fn = slim.assign_from_checkpoint_fn(
                checkpoint_path,
                slim.get_model_variables('InceptionV4'))

            with tf.Session() as sess:
                init_fn(sess)
                np_image, probabilities = sess.run([image, probabilities])
                probabilities = probabilities[0, 0:]
                sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x:x[1])]
                self.disp_names(sorted_inds,probabilities)

            plt.figure()
            plt.imshow(np_image.astype(np.uint8))
            plt.axis('off')
            plt.title(img_path)
            plt.show()



        return
pretrained.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def use_vgg16(self):

        with tf.Graph().as_default():
            image_size = vgg.vgg_16.default_image_size
            img_path = "../../data/misec_images/First_Student_IC_school_bus_202076.jpg"
            checkpoint_path = "../../data/trained_models/vgg16/vgg_16.ckpt"

            image_string = tf.read_file(img_path)
            image = tf.image.decode_jpeg(image_string, channels=3)
            processed_image = vgg_preprocessing.preprocess_image(image, image_size, image_size, is_training=False)
            processed_images  = tf.expand_dims(processed_image, 0)

            # Create the model, use the default arg scope to configure the batch norm parameters.
            with slim.arg_scope(vgg.vgg_arg_scope()):
                # 1000 classes instead of 1001.
                logits, _ = vgg.vgg_16(processed_images, num_classes=1000, is_training=False)
                probabilities = tf.nn.softmax(logits)

                init_fn = slim.assign_from_checkpoint_fn(
                    checkpoint_path,
                    slim.get_model_variables('vgg_16'))

                with tf.Session() as sess:
                    init_fn(sess)
                    np_image, probabilities = sess.run([image, probabilities])
                    probabilities = probabilities[0, 0:]
                    sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x:x[1])]
                    self.disp_names(sorted_inds,probabilities,include_background=False)

                plt.figure()
                plt.imshow(np_image.astype(np.uint8))
                plt.axis('off')
                plt.title(img_path)
                plt.show()
        return
train_classifier_mgr.py 文件源码 项目:SSD_tensorflow_VOC 作者: LevinJ 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _add_variables_summaries(learning_rate):
    summaries = []
    for variable in slim.get_model_variables():
        summaries.append(tf.summary.histogram(variable.op.name, variable))
    summaries.append(tf.summary.scalar('training/Learning Rate', learning_rate))
    return summaries
resnet.py 文件源码 项目:convolutional-vqa 作者: paarthneekhara 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def create_resnet_model(img_dim):
    pre_image = tf.placeholder(tf.float32, [None, None, 3])
    processed_image = cnn_preprocessing.preprocess_for_eval(pre_image/255.0, img_dim, img_dim)

    images = tf.placeholder(tf.float32, [None, img_dim, img_dim, 3])
    # mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
    # processed_images = images - mean
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
        probs, endpoints = resnet_v2.resnet_v2_152(images, num_classes=1001, is_training = False)
        print endpoints['resnet_v2_152/block4']

    init_fn = slim.assign_from_checkpoint_fn(
            'Data/CNNModels/resnet_v2_152.ckpt',
            slim.get_model_variables('resnet_v2_152'))

    sess = tf.Session()
    init_fn(sess)

    return {
        'images_placeholder' : images,
        'block4' : endpoints['resnet_v2_152/block4'],
        'session' : sess,
        'processed_image' : processed_image,
        'pre_image' : pre_image,
        'probs' : probs
    }
train_object_detector.py 文件源码 项目:MobileNet 作者: Zehaos 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _add_variables_summaries(learning_rate):
  summaries = []
  for variable in slim.get_model_variables():
    summaries.append(tf.summary.histogram(variable.op.name, variable))
  summaries.append(tf.summary.scalar('training/Learning Rate', learning_rate))
  return summaries
train.py 文件源码 项目:multibox 作者: gvanhorn38 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_finetunable_model(inputs, cfg):

  with slim.arg_scope([slim.conv2d], 
                      activation_fn=tf.nn.relu,
                      normalizer_fn=slim.batch_norm,
                      weights_regularizer=slim.l2_regularizer(0.00004),
                      biases_regularizer=slim.l2_regularizer(0.00004)) as scope:

      batch_norm_params = {
        'decay': cfg.BATCHNORM_MOVING_AVERAGE_DECAY,
        'epsilon': 0.001,
        'variables_collections' : [],
        'is_training' : False
      }
      with slim.arg_scope([slim.conv2d], normalizer_params=batch_norm_params):
        features, _ = model.inception_resnet_v2(inputs, reuse=False, scope='InceptionResnetV2')

      # Save off the original variables (for ease of restoring)
      model_variables = slim.get_model_variables()
      inception_vars = {var.op.name:var for var in model_variables}

      batch_norm_params = {
        'decay': cfg.BATCHNORM_MOVING_AVERAGE_DECAY,
        'epsilon': 0.001,
        'variables_collections' : [tf.GraphKeys.MOVING_AVERAGE_VARIABLES],
        'is_training' : True
      }
      with slim.arg_scope([slim.conv2d], normalizer_params=batch_norm_params):

        # Add on the detection heads
        locs, confs, _ = model.build_detection_heads(features, cfg.NUM_BBOXES_PER_CELL)
        model_variables = slim.get_model_variables()
        detection_vars = {var.op.name:var for var in model_variables if var.op.name not in inception_vars}

  return locs, confs, inception_vars, detection_vars


问题


面经


文章

微信
公众号

扫码关注公众号