def create_model(self, model_input, num_classes=2, l2_penalty=1e-8, **unused_params):
"""Creates a logistic model.
Args:
model_input: 'batch' x 'num_features' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
net = slim.flatten(model_input)
output = slim.fully_connected(
net, num_classes - 1, activation_fn=tf.nn.sigmoid,
weights_regularizer=slim.l2_regularizer(l2_penalty))
return {"predictions": output}
python类l2_regularizer()的实例源码
def fc_net(inp, layers, out_layers, scope, lamba=1e-3, activation=tf.nn.relu, reuse=None,
weights_initializer=initializers.xavier_initializer(uniform=False)):
with slim.arg_scope([slim.fully_connected],
activation_fn=activation,
normalizer_fn=None,
weights_initializer=weights_initializer,
reuse=reuse,
weights_regularizer=slim.l2_regularizer(lamba)):
if layers:
h = slim.stack(inp, slim.fully_connected, layers, scope=scope)
if not out_layers:
return h
else:
h = inp
outputs = []
for i, (outdim, activation) in enumerate(out_layers):
o1 = slim.fully_connected(h, outdim, activation_fn=activation, scope=scope + '_{}'.format(i + 1))
outputs.append(o1)
return outputs if len(outputs) > 1 else outputs[0]
def create_model(self, model_input, vocab_size, num_mixtures=None,
l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params):
num_supports = FLAGS.num_supports
num_layers = FLAGS.hidden_chain_layers
relu_cells = FLAGS.hidden_chain_relu_cells
next_input = model_input
support_predictions = []
for layer in xrange(num_layers):
sub_relu = slim.fully_connected(
next_input,
relu_cells,
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope=sub_scope+"relu-%d"%layer)
sub_prediction = self.sub_model(sub_relu, vocab_size, sub_scope=sub_scope+"prediction-%d"%layer)
relu_norm = tf.nn.l2_normalize(sub_relu, dim=1)
next_input = tf.concat([model_input, relu_norm], axis=1)
support_predictions.append(sub_prediction)
main_predictions = self.sub_model(next_input, vocab_size, sub_scope=sub_scope+"-main")
support_predictions = tf.concat(support_predictions, axis=1)
return {"predictions": main_predictions, "support_predictions": support_predictions}
def create_model(self, model_input, vocab_size, num_mixtures=None,
l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params):
num_supports = FLAGS.num_supports
num_layers = FLAGS.hidden_chain_layers
relu_cells = FLAGS.hidden_chain_relu_cells
next_input = model_input
support_predictions = []
for layer in xrange(num_layers):
sub_relu = slim.fully_connected(
next_input,
relu_cells,
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope=sub_scope+"relu-%d"%layer)
sub_prediction = self.sub_model(sub_relu, vocab_size, sub_scope=sub_scope+"prediction-%d"%layer)
relu_norm = tf.nn.l2_normalize(sub_relu, dim=1)
next_input = tf.concat([next_input, relu_norm], axis=1)
support_predictions.append(sub_prediction)
main_predictions = self.sub_model(next_input, vocab_size, sub_scope=sub_scope+"-main")
support_predictions = tf.concat(support_predictions, axis=1)
return {"predictions": main_predictions, "support_predictions": support_predictions}
def create_model(self, model_input, vocab_size, num_frames, l2_penalty=1e-8, **unused_params):
"""
A super model that combine one or more models
"""
models = FLAGS.wide_and_deep_models
outputs = []
for model_name in map(lambda x: x.strip(), models.split(",")):
model = getattr(frame_level_models, model_name, None)()
output = model.create_model(model_input, vocab_size, num_frames, l2_penalty=l2_penalty, **unused_params)["predictions"]
outputs.append(tf.expand_dims(output, axis=2))
num_models = len(outputs)
model_outputs = tf.concat(outputs, axis=2)
# linear_combination = tf.get_variable("combine", shape=[vocab_size,num_models],
# dtype=tf.float32, initializer=tf.zeros_initializer(),
# regularizer=slim.l2_regularizer(l2_penalty))
# combination = tf.nn.softmax(linear_combination)
combination = tf.fill(dims=[vocab_size,num_models], value=1.0/num_models)
output_sum = tf.einsum("ijk,jk->ij", model_outputs, combination)
return {"predictions": output_sum}
def create_model(self,
model_input,
vocab_size,
num_mixtures=None,
l2_penalty=1e-8,
sub_scope="",
original_input=None,
**unused_params):
num_methods = model_input.get_shape().as_list()[-1]
num_features = model_input.get_shape().as_list()[-2]
original_input = tf.nn.l2_normalize(original_input, dim=1)
gate_activations = slim.fully_connected(
original_input,
num_methods,
activation_fn=tf.nn.softmax,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope="gates"+sub_scope)
output = tf.einsum("ijk,ik->ij", model_input, gate_activations)
return {"predictions": output}
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, **unused_params):
"""Creates a linear regression model.
Args:
model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
num_methods = model_input.get_shape().as_list()[-1]
weight = tf.get_variable("ensemble_weight",
shape=[num_methods],
regularizer=slim.l2_regularizer(l2_penalty))
weight = tf.nn.softmax(weight)
output = tf.einsum("ijk,k->ij", model_input, weight)
return {"predictions": output}
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, epsilon=1e-5, **unused_params):
"""Creates a non-unified matrix regression model.
Args:
model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
num_features = model_input.get_shape().as_list()[-2]
num_methods = model_input.get_shape().as_list()[-1]
log_model_input = tf.stop_gradient(tf.log((epsilon + model_input) / (1.0 + epsilon - model_input)))
weight = tf.get_variable("ensemble_weight",
shape=[num_features, num_methods],
regularizer=slim.l2_regularizer(l2_penalty))
weight = tf.nn.softmax(weight)
output = tf.nn.sigmoid(tf.einsum("ijk,jk->ij", log_model_input, weight))
return {"predictions": output}
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
def arg_scope(self):
"""Configure the neural network's layers."""
batch_norm_params = {
"is_training" : self.is_training,
"decay" : 0.9997,
"epsilon" : 0.001,
"variables_collections" : {
"beta" : None,
"gamma" : None,
"moving_mean" : ["moving_vars"],
"moving_variance" : ["moving_vars"]
}
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(
stddev=self._hparams.init_stddev),
weights_regularizer=slim.l2_regularizer(
self._hparams.regularize_constant),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
def adversarial_discriminator(net, layers, scope='adversary', leaky=False):
if leaky:
activation_fn = tflearn.activations.leaky_relu
else:
activation_fn = tf.nn.relu
with ExitStack() as stack:
stack.enter_context(tf.variable_scope(scope))
stack.enter_context(
slim.arg_scope(
[slim.fully_connected],
activation_fn=activation_fn,
weights_regularizer=slim.l2_regularizer(2.5e-5)))
for dim in layers:
net = slim.fully_connected(net, dim)
net = slim.fully_connected(net, 2, activation_fn=None)
return net
def vgg_arg_scope(weight_decay=0.0005):
"""Defines the VGG arg scope.
Args:
weight_decay: The l2 regularization coefficient.
Returns:
An arg_scope.
"""
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_initializer=tf.zeros_initializer()):
with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc:
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
def create_model(self, model_input, num_classes=10, l2_penalty=1e-8, **unused_params):
"""Creates a logistic model.
Args:
model_input: 'batch' x 'num_features' matrix of input features.
num_classes: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
net = slim.flatten(model_input)
output = slim.fully_connected(
net, num_classes, activation_fn=None,
weights_regularizer=slim.l2_regularizer(l2_penalty))
return {"predictions": output}
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
activation_fn=None,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose],
padding='SAME',
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,) as arg_sc:
with slim.arg_scope(
[slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn) as arg_sc:
return arg_sc
def _bn_relu_conv_block(input,
filters,
kernel=(3, 3),
stride=(1, 1),
weight_decay=5e-4):
''' Adds a Batchnorm-Relu-Conv block for DPN
Args:
input: input tensor
filters: number of output filters
kernel: convolution kernel size
stride: stride of convolution
Returns: a keras tensor
'''
channel_axis = -1
x = slim.conv2d(input, filters, kernel, padding='SAME', stride=stride,
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.contrib.layers.xavier_initializer(),
biases_initializer=None)
x = slim.batch_norm(x)
x = tf.nn.relu(x)
return x
def _root_block(input,
initial_conv_filters,
weight_decay=5e-4,
ksize=(7,7),
is_pool=True):
''' Adds an initial conv block, with batch norm and relu for the DPN
Args:
input: input tensor
initial_conv_filters: number of filters for initial conv block
weight_decay: weight decay factor
Returns: a keras tensor
'''
x = slim.conv2d(input,
initial_conv_filters,
ksize,
padding='SAME',
stride=(1, 1),
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.contrib.layers.xavier_initializer(),
biases_initializer=None)
x = slim.batch_norm(x)
x = tf.nn.relu(x)
if is_pool:
x = slim.max_pool2d(x, (3, 3), stride=(2, 2), padding='SAME')
return x
def create_model(self, model_input, vocab_size, l2_penalty=1e-4, **unused_params):
"""Creates a logistic model.
Args:
model_input: 'batch' x 'num_features' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
with tf.name_scope('MyNNModel0'):
h1Units = 2400
a1 = slim.fully_connected(
model_input, h1Units, activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope='FC1')
output = slim.fully_connected(
a1, vocab_size, activation_fn=tf.nn.sigmoid,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope='FC2')
return {"predictions": output}
#%%
#%%
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, **unused_params):
"""Creates a logistic model.
Args:
model_input: 'batch' x 'num_features' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
output = slim.fully_connected(
model_input, vocab_size, activation_fn=tf.nn.sigmoid,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope = 'Logistic_FC')
return {"predictions": output}
def inference(images, keep_probability, phase_train=True,
bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# force in-place updates of mean and variance estimates
'updates_collections': None,
# Moving averages ends up in the trainable variables collection
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return inception_resnet_v2(images, is_training=phase_train,
dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
def inference(images, keep_probability, phase_train=True,
bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# force in-place updates of mean and variance estimates
'updates_collections': None,
# Moving averages ends up in the trainable variables collection
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return inception_resnet_v1(images, is_training=phase_train,
dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
def encoder(self, images, is_training):
activation_fn = leaky_relu # tf.nn.relu
weight_decay = 0.0
with tf.variable_scope('encoder'):
with slim.arg_scope([slim.batch_norm],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=self.batch_norm_params):
net = images
net = slim.conv2d(net, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1a')
net = slim.repeat(net, 3, conv2d_block, 0.1, 32, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_1b')
net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2a')
net = slim.repeat(net, 3, conv2d_block, 0.1, 64, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_2b')
net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3a')
net = slim.repeat(net, 3, conv2d_block, 0.1, 128, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_3b')
net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4a')
net = slim.repeat(net, 3, conv2d_block, 0.1, 256, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_4b')
net = slim.flatten(net)
fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
return fc1, fc2
def encoder(self, images, is_training):
activation_fn = leaky_relu # tf.nn.relu
weight_decay = 0.0
with tf.variable_scope('encoder'):
with slim.arg_scope([slim.batch_norm],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=self.batch_norm_params):
net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1')
net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2')
net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3')
net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4')
net = slim.conv2d(net, 512, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_5')
net = slim.flatten(net)
fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
return fc1, fc2
def inference(inputs, keep_prob,
bottleneck_size=128,
phase_train=True,
weight_decay=0.0,
reuse=None):
batch_norm_params = {
'decay': 0.995,
'epsilon': 0.001,
'updates_collections': None,
# 'scale': True, # [test1]
'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES]} # [test2: removed from 'trainable_variables']
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_regularizer=slim.l2_regularizer(weight_decay), # [test4: add weight_decay to biases]):
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return inception_resnet_v2(
inputs,
is_training=phase_train,
keep_prob=keep_prob,
bottleneck_size=bottleneck_size,
reuse=reuse)
def inference(inputs, keep_prob,
bottleneck_size=128,
phase_train=True,
weight_decay=0.0,
reuse=None):
batch_norm_params = {
'decay': 0.995,
'epsilon': 0.001,
'updates_collections': None,
# 'scale': True} # [test1: add 'gamma']
'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES]} # [test2: removed from 'trainable_variables']
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params): # [test4: add weight_decay to biases]):
return inception_resnet_v2(
inputs,
is_training=phase_train,
keep_prob=keep_prob,
bottleneck_size=bottleneck_size,
reuse=reuse)
def inference(inputs, keep_prob,
bottleneck_size=128,
phase_train=True,
weight_decay=0.0,
reuse=None):
batch_norm_params = {
'decay': 0.995,
'epsilon': 0.001,
'updates_collections': None,
# 'scale': True, # [test1]
'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES]} # [test2]
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return inception_resnet_v1(inputs, is_training=phase_train, keep_prob=keep_prob,
bottleneck_size=bottleneck_size, reuse=reuse)
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
activation_fn=None,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS_EXTRA,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose],
padding='SAME',
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,) as arg_sc:
with slim.arg_scope(
[slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn) as arg_sc:
return arg_sc
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
def create_network(self, input, trainable):
if trainable:
wr = slim.l2_regularizer(self.regularization)
else:
wr = None
# the input is stack of black and white frames.
# put the stack in the place of channel (last in tf)
input_t = tf.transpose(input, [0, 2, 3, 1])
net = slim.conv2d(input_t, 8, (7, 7), data_format="NHWC",
activation_fn=tf.nn.relu, stride=3, weights_regularizer=wr, trainable=trainable)
net = slim.max_pool2d(net, 2, 2)
net = slim.conv2d(net, 16, (3, 3), data_format="NHWC",
activation_fn=tf.nn.relu, weights_regularizer=wr, trainable=trainable)
net = slim.max_pool2d(net, 2, 2)
net = slim.flatten(net)
net = slim.fully_connected(net, 256, activation_fn=tf.nn.relu,
weights_regularizer=wr, trainable=trainable)
q_state_action_values = slim.fully_connected(net, self.dim_actions,
activation_fn=None, weights_regularizer=wr, trainable=trainable)
return q_state_action_values